

Supporting Information

Directed Gas-Phase Synthesis of Triafulvene under Single-Collision Conditions

Aaron M. Thomas, Long Zhao, Chao He, Galiya R. Galimova, Alexander M. Mebel,* and Ralf I. Kaiser*

anie_201908039_sm_miscellaneous_information.pdf

Table S1. Peak velocities (v_p) and speed ratios (*S*) of the methylidyne (CH), d₁-methylidyne (CD), allene (H₂CCCH₂), d₄-allene (D₂CCCD₂), methylacetylene (CH₃CCH), and d₄-methylacetylene (CD₃CCD), d₃-methylacetylene (CD₃CCH), and d₁-methylacetylene (CH₃CCD) beams along with the corresponding collision energies (E_c) and center-of-mass angles (Θ_{CM}).

Beam	$rac{ u_{ m p}}{({ m m~s}^{-1})}$	S	$E_{\rm C}$ (kJ mol ⁻¹)	Θ_{CM} (degree)
$CH(X^2\Pi)$	1774 ± 14	10.5 ± 0.7	19.6 ± 0.2	54.2 ± 0.4
$H_2CCCH_2(X^1A_1)$	800 ± 10	12.0 ± 0.4	18.6 ± 0.3	54.2 ± 0.4
$CH(X^2\Pi)$	1779 ± 13	12.3 ± 1.2	18.7 ± 0.2	54.2 ± 0.4
$CH_3CCH(X^1A_1)$	800 ± 10	12.0 ± 0.4	10.7+ 0.2	57.2 ± 0.4
2				
$CH(X^2\Pi)$	1713 ± 24	9.7 ± 0.5		
$CD_3CCD(X^1A_1)$	790 ± 10	12.0 ± 0.4	17.8 ± 0.4	57.4 ± 0.5
$D_2CCCD_2 \left(X^1A_1 \right)$	790 ± 10	12.0 ± 0.4	17.8 ± 0.4	57.4 ± 0.5
СD (Х ² П)	1768 ± 9	13.1 ± 1.2		
$H_2CCCH_2 (X^1A_1)$	1708 ± 9 800 ± 10	13.1 ± 1.2 12.0 ± 0.4	19.3 ± 0.2	52.4 ± 0.4
$CD_3CCH (X^1A_1)$	790 ± 10	12.0 ± 0.4 12.0 ± 0.4	19.3 ± 0.2 19.4 ± 0.2	52.4 ± 0.4 52.8 ± 0.4
$CH_3CCD(X^1A_1)$	800 ± 10	12.0 ± 0.1 12.0 ± 0.4	19.1 ± 0.2 19.5 ± 0.2	52.0 ± 0.1 53.1 ± 0.4
- (-)				

Table S2. Product branching ratios of the CH + methylacetylene and CH + allene reactions calculated for single-collision conditions using RRKM theory at the collision energy of 19 kJ mol^{-1} .

CH + methylacetylene								
	vinylacetylene	butatriene	triafulvene	$C_2H_2+C_2H_3$				
	(p1) + H	(p2) + H	(p3) + H					
triple bond addition	18.39%	14.55%	66.90%	0.17%				
sp ³ CH bond insertion	97.57%	0.22%	0.00%	2.42%				
sp CH bond insertion	47.01%	52.64%	0.15%	0.20%				
CC bond insertion	99.30%	0.00%	0.00%	0.69%				
CH + allene								
	vinylacetylene	butatriene	triafulvene	$C_2H_2+C_2H_3$	$C_2H_4+C_2H$			
	(p1) + H	(p2) + H	(p3) + H					
double bond addition	98.58%	1.26%	0.08%	0.08%	0.00%			
sp ² CH bond insertion	16.75%	0.00%	0.00%	83.18%	0.07%			

Figure S1. Time-of-flight spectra recorded at the CM angles for m/z = 51 (C₄H₃⁺) and m/z = 52 (C₄H₄⁺) for the reaction of the methylidyne radical (CH) with a) allene (CH₂CCH₂) and b) methylacetylene (CH₃CCH). The left and right panels depict raw and scaled TOF spectra, respectively. Since both traces overlap, signal at m/z = 51 represents a fragment of m/z = 52.

Figure S2. Time-of-flight spectra recorded at m/z = 51 (C₄H₃⁺) for the reaction of the methylidyne radical (CH) with allene (CH₂CCH₂). The circles represent the experimental data and the solid lines the best fits.

Figure S3. Time-of-flight spectra recorded at m/z = 51 (C₄H₃⁺) for the reaction of the methylidyne radical (CH) with methylacetylene (CH₃CCH). The circles represent the experimental data and the solid lines the best fits.

Figure S4. Time-of-flight (TOF) spectra at recorded at m/z 56, 55, and 54 for the reactions of the methylidyne (CH) radical with (*left*) d₄-allene (CD₂CCD₂) and (*right*) d₄-methylacetylene (CD₃CCD).

Figure S5. Time-of-flight (TOF) spectra recorded at mass-to-charge (m/z) ratios corresponding to the singly-ionized hydrogen-loss product formed in the partially deuterated reactions of (a) CH plus methylacetylene (CH₃CCH) and (b) CH plus allene (CH₂CCH₂) reactions. Ion counts at m/z = 56 for the CD/CD₃CCH system can be accounted by ¹³C isotopes and hence ¹³CC₃D₃H.

Figure S6. After establishing the source of the deuterium loss in the $CH + CD_3CCD$ reaction, we collected time-of-flight (TOF) spectra at m/z 54 ($C_4D_3^+$) in 5° intervals in the laboratory frame to further constrain the deuterium-loss channel for comparison with the data obtained in the fully hydrogenated reaction. The resulting laboratory angular distribution is symmetric about the CM angle of 57.4 ± 0.5° and is otherwise similar to those obtained from the CH + H₂CCCH₂ and CH + CH₃CCH systems at m/z 51. a) TOF spectra and b) laboratory angular distribution recorded at m/z 54 ($C_4D_3^+$) for the reaction of the methylidyne radical with d₄-methylacetylene. The circles represent the experimental data and the solid lines the best fits.

Figure S7. The CH +CD₃CCD system was fit with parameters similar to those used for the CH + CH₃CCH and CH + H₂CCCH₂ systems. The $P(E_T)$ peaks at 28 ± 4 kJ mol⁻¹, extends out to 171 ± 25 kJ mol⁻¹, and has an average E_T of 46 ± 7 kJ mol⁻¹. The C₄HD₃ molecules formed in this reaction by atomic deuterium emission are therefore characterized by a reaction exoergicity of 153 ± 25 kJ mol⁻¹. The $T(\theta)$ portrays product flux at all angles and is forward-backward symmetric with a maximum at 90°. Hence, we draw similar conclusions regarding the CH + CD₃CCD \rightarrow C₄HD₃ + D reaction coordinate, namely the involvement of relatively long-lived bound intermediates decomposing via tight exit transition states. a) center-of-mass translational energy $P(E_T)$ and b) angular $T(\theta)$ flux distributions for the reaction of the methylidyne radical with methylacetylene-d₄ forming C₄HD₃ isomer(s) by atomic deuterium emission. Solid lines represent the best fit while shaded areas indicate the experimental error limits.