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ABSTRACT: The fulvenallene moleculekfg) has been synthesized via the
elementary gas-phase reaction of the methylidyne radical (CH) with the
benzene molecule ;) on the doublet ¢H, surface under single collision
conditions. The barrier-less route to the cyclic fulvenallene molecule involves
the addition of the methylidyne radical to thedectron density of benzene
leading eventually to a Jafieller distorted tropyl ({i,;) radical
intermediate and exotic ring openimgy contraction sequences terminated

by atomic hydrogen elimination. The methylidyne-benzene system repréefits a
benchmark to probe the outcome of the elementary reaction of the siFplest=——=>> <
hydrocarbon radicaimethylidyne with the prototype of a closed-shell
aromatic moleculebenzene yielding nonbenzenoid fulvenallene. Combined
with electronic structure and statistical calculations, this bimolecular reaction
sheds light on the unusual reaction dynamicsckEHaromatic systems and

remarkable (polycyclic) reaction intermediates, which cannot be studied via classical organic, synthetic methods, thus opening u

versatile path to access this previously largely obscure class of fulvenallenes.

1. INTRODUCTION cyclopentadienyls8s (2; X°E, ) and cycloheptatrienykl&,

. ; 3716 ; ;
Since the pioneering discovery more than 80 years ago @ XZE2) rad_lcalé_ from the!r R "’?”d Drn symmeztrles
Hermann Arthur Jahn and Edward Teller, the Tafier  '€sult in G, distortions andB, diene/triene 6, 8) and “A,

(JT) e ect has been instrumental to the fundamentafllyl-type T, 9) geometneé;m both systems, the diene and
understanding of the electronic structure, chemical bondir@ly! distortions are nearly isoenergetic and lower the energy of
and spectroscopy of (in)organic molecules holding #e degenerate system by 8 to 15 kJ'riiot

degenerate electronic ground Stamétially encountered in Besides the viewpoint of molecular structure and chemical
octahedral transition metal complexes such as dfitbe d bonding, the cycloheptatrienyl systeid; 3, 8, 9) also
copper(ll), the JahrTeller theorem states that any nonlinear known as the tropyl radicainay undergo isomerization and
molecule with a degenerate electronic ground state undergoesmolecular decomposition via atomic hydrogen elimination

a geometrical distortion along nontotally symmetric vibrationsd fulvenallenelfl) a benchmark of a 6nonbenzenoid
modes from its highest symmetry that eliminates thairomatic hydrocarboB¢heme)?'’ this is best understood in
degeneracy since this distortion lowers the overall energytefms of its resonance structure carrying a delocalized negative
the moleculé.* The homologous series of the cyclldsC  charge at theve-membered ring and a localized positive
(1), CsHs (2), and GH; (3) radicals fcheme)ihas attracted  charge at the central, allenic carbon afrheme )3 The
particular interest from the physical organic, theoreticiomologues series of nonbenzenoid aromatics comprises 3-
chemistry, and material science communities in exploitiighenylidenecyclopropeneHg (10), 5-ethenylidene-1,3-

the JahnTeller theorem to unravel the exotic electronic ; ;
cyclopentadiene/fulvenalle 11), and 7-ethenylidene-
structure and chemical bonding of prototypes of JT distortedy P nHE(1]) y

Huckel-aromatic transient raditdlslong with implications
to high-temperature Slé%grconduct‘f’viﬂyagnetoresistarﬁ:e,
and conical intersectiof’$! The D;, symmetric cyclo-
propenyl radical £, (1; X?E) distorts through vibronic
coupling involving the (1030 cm?), anda, (778 cm?)
normal modes resulting in two nearly isoenergetic species
holding C; point groups 4, 5).** The deformation of the
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Scheme 1. Molecular Structures, Electronic Wave Functions, and Point Groups of Cyclopropenyl (1), Cyclopentadienyl (2),
and Cycloheptatrienyl (Tropyl, 3) Radicals along witheEts of Distinct JahnTeller Distortions (4 9)

1
c-C3Hz
X E", D3p

4 5
c-C3H3 ¢-C3H3
X4, Cs X4, Cs

2
¢-CsHs
X E;". Dsh

Diene Allyl
Distortion Distortion

< O

6 7
¢-CsHs ¢-CsHs
X"Bj, Cax X4z, Cov

3
c-C7H7
X E>",Dm

Diene Allyl
Distortion Distortion

8 9
¢-C7H7 ¢-C7H7
X°Bj, Cov X°A42, Coy

Hedaya et al. viaash vacuum pyrolysis of benzyl
uoridé®?* readily polymerizes to form the #thuta-1,3-
diene-2,3-diyl)dicyclopenta-1,3-diet®*{ possibly due to
the involvement of its dipolar resonance structure attributed to
its dipole moment of 0.69 B¢heme)3*® Therefore, despite
compelling evidence of the formation of fulvenalldhaq a
short-lived reactive intermediate in combustiores of, e.g.,
n-propylbenzene, ethylbenzene, styrene, toluene, cyclopentene
and acetyleré ?° leading to the formation of polycyclic
aromatic hydrocarbons (PAHs) and eventually to carbona-
ceous nanoparticf&s’ the directed synthesis and isolation of
fulvenallene 1(1) in the gas phase has eluded synthetic
chemists over the past decades. This elaBsie fulvenallenes
as one of the least explored classes of organic molecules.

Scheme 2. Molecular Structures, Electronic Wave
Functions, and Point Groups of 3-
Ethenylidenecyclopropene (10), 5-Ethenylidene-1,3-
cyclopentadiene (Fulvenallene, 11), and 7-Ethenylidene-
1,3,5-cycloheptatriene (12)

L& O

10 11 12 Herein, we provide a rare glimpse into the obscure chemistry
¢-CsHy ¢-CrHe ¢-CoHlg of the cyclic fulvenallen&lf molecule by unraveling its gas-
X'41,Cay X4y, Cay X'4,,Cyy

phase synthesis under single-collision conditions through
bimolecular reactions of the methylidyne radical (EH, X

1,3,5-cycloheptatriengHg (12). These species are linked to With the aromatic benzene moleculHECX'A,g) via Jahn

(1), (2), and @) by expanding the carbon backbone by anTeller distorted tropyl i; (3) reactive intermediates
exocyclic vinylidene moiety (CgHesulting in planar, ,¢ u_tlllzmg th_e crossed moIec_uIar beams method. The examina-
symmetric closed shell aromatic systens, 12) (Scheme  tion of bimolecular reactions at the most fundamental,
2).Y” Although fulvenallenes carrying bulky substituents on tHgicroscopic level delivers unique insights into the reaction
cyclopentadienyl ring such as bis(1t&hutylcyclopenta- mechanisms through which highly reactive intermediates and
dienylidene)-methane {8, '° are stable at room temper- closed shell molecules such as fulvenalignaré formed

ature and also in transition metal complexes like metalithout successive reactions in the gas-phase. This system is
lafulvenallenes, which are comprised of a metalla-cycRiso attractive from the physical organic chemistry viewpoint,
pentadiene species connected vialamylidene ligand, since fulvenallenell) represents a benchmark of non-
the parent compound fulvenalleb® ( rst synthesized by benzenoid aromatic molecules thus elucidating the chemical

Scheme 3. Dipolar Resonance Structure of Fulvenallene (11) Leading to the Head-to-Tail Dimer 13
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Figure 1.(a) Laboratory angular distribution, (b) timeigfit (TOF) spectra recorded at a mass-to-char'gg ¢f 90, (c) best+ translational
energy P(E;)), and (d) center-of-mass angulef () ux distributions for the reaction of the methylidyne radical (GHXE ) with benzene
(CeHe; Dgpy XlAlg). The directions of the methylidyne radical and benzene beamsadeaded and 90, respectively. The black circles
represent the experimental data. The red lines delineate tte blatled areas delimit the acceptable upper and lower errBy, lidénes
the maximum translational energy.

reactivity, bond-breaking processes, and the formation loést signal-to-noise ratio mfz = 90. The consequential
exocyclic vinylidene-substituted aromatic molecules as laboratory angular distribution displays a maximum at the
outcome of a single collision, which is not feasible bgenter-of-mass (CM) angle of 8860.3 spanning at least
traditional synthetic chemistry routes. Therefore, our approa@® in the laboratory frame-igure land Table S} The
represents an original route to access a rather elusive clasfofard backward symmetry with respect to the center-of-

aromatic hydrocarbon molecules: fulvenalldhe ( mass angle suggests that the reaction proceeds through indirect
scattering dynamics involving at least o, @action
2. RESULTS intermediate that ultimately undergoes unimolecular decom-

2.1. Laboratory Frame.Reactive scattering signal for the position by emitting atomic hydrogen to the neutl C
reaction of the methylidyne radical (CH, )with benzene  product.
(CeHe, xlAlg) was detected at mass-to-charge raticg Of Since atomic hydrogen can be emitted from the methylidyne
91 (°CCsHg"), 90 (CHg"), and 89 (GHs") with signal airv and/or from the benzene reactant, the reaction of methylidyne
z=89 and 91 collected at a level o 86 and & 2% with (CH) with benzenel; (C¢Dg) was carried out as well. For the
respect tar/z = 90. These time-ofght (TOF) spectra are  CH/C 4Dy system, the hydrogen-;[fg) and deuterium-loss
superimposable after scaling suggesting a single reac{iorHDs) products are expected to depict ion counts of the
channel namely the reaction of the methylidyne radical (CHharent molecule a¥ z = 96 and 95, respectivetgdctions 2
13 amu) with benzene {d;, 78 amu) leading to,8B4 (90 and3). It is critical to highlight that the productaltz = 96
amu) along with atomic hydrogen (H; 1 amu) with ion countscannofragment tarw/ z = 95. Therefore, the iderdation of
atm/ z = 90 linked to singly ionizedH. lons atm/z = 89 signal atr/ z = 96 and/or 95 would represent explicit evidence
can be associated with dissociative electron impact ionizatiom the existence of the hydrogenD and deuterium-loss
of the neutral &g product, whereaw z = 91 represents the (C,HDs) products, respectively. In our experiment, signal at
13C-substituted product’CC¢Hg" based on the natural nvz = 96and95 are both observeBigure S)L Accounting
distribution of carbon atom isotopes. Thes#ings reveal for the !3C isotopic contributions totaling to 7.7% for seven
that the GHg isomer(s) are formed via the methylidyne versusarbon atoms and integrating the ion counts, the branching
atomic hydrogen replacement channel upon reaction witlatio of the hydrogen atom lossaction Pversus deuterium
benzenergaction L. The time-of-ight (TOF) spectra and loss (eaction Bis determined to be 54#80.8:1. In brief, the
the full laboratory angular distributions were extracted at theotope experiments reveal that for the methylidyne radical
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Figure 2.Schematic representation of the potential energy surface of the reaction of the methylidyne radical with benzene. Energies calculatec
the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) + ZPE(B3LYP/6-311G(d,p) level are shown intkahohare relative to the energy of
the separated reactants.

(CH) with benzene (gHo) system, the hydrogen loss from theP(E;) as 123+ 19 kJ mol. Considering energy
originates from both reactants favoring the emission froeonservation, the maximum translational endfgy), (
the benzene reactant. Accounting for the number of hydrogenllision energyE), and the reaction energy ,G) for
atoms, statistically, a ratio of 6:1 for emission from benzenepgeoducts without internal excitation are connectds), yia

methylidyne is expecteiqure SR E: .G; therefore, the reaction energy computes td0¢
+ 19 kJ mol. Further, theP(E;) distributions reveals a
CH (13 amu)+ G H (78 amu) maximum slightly away from zero translational energy located
C,Hg(90 amw) H (1 amu) 1) at only 10+ 2 kJ mol’. The average translational energy of

the products was derived to be-35kJ mol* suggesting that
only 28+ 4% of the maximum energy is released into the
CH(13amu)+ G I3 (84 amu) translational degrees of freedom of the products. These
C,D; (96 amu)  H (1 amu) @) _ndings propose indirect scattering dynamics invohthg C
intermediate(s) undergoing unimolecular decomposition
through loose exit transition state(s) via a simple bond rupture
CH (13 amu}+ G R (84amu) process’ Finally, theT( ) distributions show a pronounced
C,HD; (95 amu) D (2 amu) ©) forward backward symmetry with a maximum &t 90
(sideways scattering) and provide additional information on
2.2. Center-of-Mass FrameThe laboratory data deliver the scattering dynamics. The symmetry of Tthe
explicit evidence of hydrogen emission from the. methy"qyftﬁstributions suggests a decomposirtg, Gntermediate
andfrom the benzene reactants. Our central goal is to elucidaig|ding a lifetime longer than its rotational period(s). The
the nature of the £lg isomers formed and to unravel the sideways scattering highlights strong geometrical constraints
underlying reaction mechanism(s) on the pertingt C  on the decomposing intermediate revealing that the hydrogen
potential energy surface (PES) accessed via the bimolecygdm is eliminated perpendicular to the rotational plane of the

reaction of the methylidyne radical (CH, Mwith benzene  gecomposing complex and hence almost parallel to the total
(CeHg, X'Aqg. To accomplish these objectives, a forward—angmar momentum veciort

convolution tting of the laboratory data results in a CM
translational energi(E) and CM angularT( ) ux
distribution Figure ). Within our error limits, the bedt- 3. DISCUSSION

CM functions were obtained using a single charwigh the In case of polyatomic systems, it is always dmnéo
product mass combination gHg (90 amu) plus H (1 amu). combine the experimental data with electronic structure
The maximum translational energy releBgsgswWas derived  calculations to untangle the underlying reaction mechanism(s)
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Figure 3.Computed geometries of the exit transition states leading to fulvepBlland (-ethynylcyclopenta-1,3-digr. (Angles of the
departing hydrogen atoms are given in degrees with respect to the rotation plane of the decomposing complex.

(Figure 2 Table S} Our electronic structure calculations Considering the barriers of isomerization, the tropyl radical
identi ed the existence of seven atomic hydrogen loss produ¢i®) either undergoes an out-of-plane [1,4] hydrogen
(pl p5, p7, p8) along with one acetylene loss charp®l ( migration or cyclization forming intermedia8esnd i4,

These are fulvenallengl( G = 104+ 4 kJ mol?), 1- respectively. Here, thi@ i4 isomerization can be
ethynylcyclopenta-1,3-diep;( ,G = 95+ 4 kJ mol?), rationalized as pseudorotati®dr{8) 9 via3 followed by
cyclohepta-1,2,4,6-tetraep8; ( .G = 55+ 4 kJ molY), an electrocyclic ring closure. Six consecutive isomerization

phenylcarbened; G = 14% 4 kJ mol%), norcaradienylli-  steps from3 involving [4,2] hydrogen shifi6), cyclization
dene p5;, ,G =276+ 4 kJ molY), cyclopentadienyl (8) (i6), ring opening forming an exocyclic ,Ghbiety (8),
plus acetylene ¢8,) (p6;, G = 182+ 4 kJ molY), cyclizationi 1), ring opening leading to we-membered ring
benzocyclopropen@® G = 76 + 4 kJ molY), and intermediateil2), hydrogen shifti13), and atomic hydrogen
bicyclo[3.2.0]hepta-1,3,6-trieng8;( G = 20 £ 4 kJ elimination accompanied by aromatization leaglto
mol Y), with the overall reaction energies provided inConsidering intermediai4, the latter may ring opeiv),
parentheses. It should be noted gftatannot be observed undergo two consecutive hydrogen migrati®nel@), and
in the present experiment because of the unconqueralifien emit atomic hydrogen formpig Note thatpl may also
background counts oft;" and GH," fragments originating be formed via fragmentationit® without passing through
from dissociative electron impact ionization of the benzerietermediateil3. Alternativelyj9 undergoes unimolecular
reactant. A comparison of the experimentally derived reactidacomposition t@2 plus atomic hydrogen. Therefore, we
energy of 104 + 19 kJ mol* with the aforementioned identi ed three possible pathwayst@nd one reaction route
energetics suggests that fulvenalfe)ead/or 1-ethynylcy-  to p2 with all reaction sequences commencing with the tropyl
clopenta-1,3-diengpd) are likely reaction products. The radical {2).
higher energy isomaa3, p4, p7, andp8 might be masked in How can we narrow down the aforementioned pathways to
the low energy section of the CM translational energpl and/or p2 even furtherFirst a close inspection of the
distributionP(E;). For example, g3 or p4 is solely formed, center-of-mass angular distribution revealed a maximdm at 90
the resulting translational energy distributions would terminafeideways scattering) suggesting that the dominating decom-
close to 74 kJ mdlor 5 kJ molt. This is clearly not observed position pathway of the /&, intermediate involves a
experimentally. Finally, the synthespbafith a computed  hydrogen atom which is ejected perpendicularly to the
reaction energy of 2#64 kJ mol* is highly endoergic and rotational plane of the decomposing complex. The computed
hence not feasible under our experimental conditiongeometries of the exit transition states leadipgj aod p2
considering a collision energy of only 84 kJ motf. reveal that all transition stated connecting the intermediates to
Therefore, we can conclude that our experiments lead to tp& can account for the sideways scattering with hydrogen
formation of at least fulvenallep#&) (and/or 1-ethynylcyclo- emitted at angles of 88°087.33, and 76.F1with respect to
penta-1,3-dieng@?) under single collision conditions in the the rotating plane of the decomposing complexire 3.
gas phase. Howeveri9 the only intermediate connecting®o loses a

With the identication of fulvenallenegpl) and/or 1- hydrogen atom within the plane of the decomposing complex.
ethynylcyclopenta-1,3-diep@)( we would like to reveal the Thereforei9 can be excluded as a decomposing complex, since
underlying reaction mechanism(s) to their formation and tehe sideways geometry cannot be replicategh2areh be
quantify their contributions to the reactive scattering signatliminated as a predominant prodBetondhe distribution
The methylidyne radical (CH) was found to add to themaximum of the center-of-mass translational energy distribu-
delocalized-electron system of the benzene molecule withouion of 10+ 2 kJ mol* predicts a loose exit transition state.
entrance barrief~{gure 2. Formally, addition to a carbon  The aforementioned exclusionp@fsuggests that this exit
carbon double bond leads to a bicycjid;@htermediatél transition state must conneciHg intermediate(s) tql.
that is bound by 216 kJ mbivith respect to the separated Fulvenallenepd) can be formed via unimolecular decom-
reactants. This intermediate undergoes facile ring opening vipasition of intermediatd®, i12, andil3 via an exit transition
barrier of only 2 kJ mélto the JahnTeller distorted, tropyl  state located 11, 24, and 6 kJ fabbove the energy of the
radical 2). Competing pathways df leading top5 plus separated products. Therefore, intermediftemd/or i13
atomic hydrogen and isomerizationitoare energetically represent the most likely decomposing complexes. Finally, we
unfavorable. The cyclic tropyl radidd) fepresents the exploited RiceRamspergeKasselMarcus (RRKM) theory
central transient species connecting eventuallyatad p2. to calculate the branching ratios of the observablg C
According to our calculationg, is G, cycloheptatrienyl isomers and predicted within a limit of complete energy
structure with théB, electronic term, which corresponds to randomization the dominant hydrogen atom loss pathway(s)
structureB. The allylic structur@ (?A,) and D;-symmetri@ from the GH; intermediate(s) T{able SP These studies
(°’E,) reside 1 and 19 kJ mblabove8, respectively. reveal that fulvenallenpl), 1-ethynylcyclopenta-1,3-diene
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(p2), and cyclohepta-1,2,4,6-tetragr@ ¢ontribute 92.56%, predominantly enigmatic dse interstellar bands (DIBs)
7.37% and 0.07% of the total yield of all isomers at a collisiand unidentied infrared (UIRs) bandsSince methylidyne
energy of 18.6 kJ mdl respectively. Further, for the radicals react without barrier with benzene leading essentially
dominating product fulvenallenpl)( dissociation from to ring contractiomnd the formation of an exocyclic allenic
intermediatal0, i12, andil3 supplies 55.26%, 0.92%, and moiety ( CCCH,), even in molecular clouds, PAHs and their
43.82% of all molecules, respectively. Therefore, RRKd#érivatives are expected to react with methylidyne radicals
calculations and experiments correlate nicely revealingleading to the ective formation of fulvenallene-substituted
dominant formation of fulvenallengl)( via loose exit PAHs Gcheme }4 In combustion systems, fulvenafiefg
transition states involving intermedidt@sandil3 through
indirect scattering dynamics. Scheme 4. Fulvenallene-Substituted PAHs

4. CONCLUSIONS

In conclusion, our study revealed tfs directed gas phase
synthesis of the aromatic fulvenall@dg rholecule formed
via the bimolecular reaction of the methylidyne radial (CH)
with benzene (gH¢) under single-collision conditions.
Fulvenallene was generated through a barrier-less cyclo-
addition of the methylidyne radical to thelectron density
of benzene resulting in a rovibrationally excited, Deller
distorted tropyl radical intermediate,H¢) followed by
isomerization of the initial collision complex via hydrogen
shifts along with ring opening and ring closure processes with
two decomposing intermediatesnylcyclopentadienyl and
-(cyclopenta-1,3-dien-1-yl)vingmitting atomic hydrogen
though loose exit transition states. This reaction accesses the
hitherto poorly studied potential energy surface (RHS); C
together with exotic (bicyclic) reaction intermediates such

resonantl ilized free radicals (RSFRs) vinylcyclopen Lo ! ) ,
esonantly stabilized free radicals (RSFRs) ylcyclope reaction intermediates playing a fundamental role in molecular

dienyl and -(cyclopenta-1,3-didnyl)vinyl, which are h leadi wally t :
di cult to“maké via traditional organic synthetic approachesr.naSSM Or(%\zlv processes leading eventually 1o soot par-
gcles. : Here, the reactions of fulvenallene and acetylene

Scrambling of the hydrogen and deuterium atoms in thmlght produce inderé; the self-recombination of two
fragmenting complex of the benagrand methylene system ulvenallenyl radicals might lead even to phenanttrenes,

is complete ultimately yielding a branching ratio of th hus highlighting the critical need of fundamental reaction

deuterium versus hydrogen loss of:5088:1, which agrees q ics studi | t 10 the f i f i t
within the error limits with the deuterium to hydrogen ratio in2Y"amics studies refevant to the formation of aromatic Systems
and their exotic precursors such as fulvenalihein(

the decomposing,BgH complexes of 6:1. This scrambling . . : !
occurs in the tropyl radical intermedtea pivotal structure  compustion systems and in the interstellar medium.
fqr all decomposmqn pathwa?sundgrgoes pseudorota}non 5. EXPERIMENTAL AND COMPUTATIONAL
via the B;rsymmetric structure residing only 12 kJ mol
above the & local minimurtP*® making all H (D) atoms

equivalent and t_hus erasing‘themory of their origin either benzenek (C(Dg; XA, were performed under single-collision
from the methylidyne (CH) or benzelgCeDg) reactants. congitions using a universal crossed molecular beams machine at the

Beyond the fundamental chemical dynamics consideratioQgiversity of Hawaif. In the primary chamber, a pulsed supersonic
the reaction mechanisms uncovered in this study ameam of methylidyne radicals was produced by photodissociation
exceptionally relevant to the combustion and astrochemigalOMPex 110, Coherent, Inc.; 248 nm; 30 Hz) of a gas mixture of
regimes? “? In combustion systems, theHg surface is of ~ bromoform (CHBy, Aldrich Chemistry, 99%) seeded in helium
critical relevance for multiple important reactions besides t@9.9999%; AirGas) held in a stainless steel bubbler at 283 K with a
CH-CgHs system such as cyclopentadiemgtylene, fulve- stagnation pressure of2.2ﬁmﬁter.ylng through the skimmer, the
nallene atomic hydrogen, and unimolecular decomposition di€thylidyne radicals were velocity-selected by a four-slot chopper
benzyl, tropyl, and vinylcyclopentadieny radivdts high wheel with a peak velooigyof 1772+ 10 m s* and speed rati®of

13.0+ 0.4 (Table S). Rotational temperatures of the methylidyne
level temperature- and pressure-dependent rate constants al beam was determined to be 14 exploiting laser-induced

product branching ratios provided in t8epporting uorescence techniglidn the secondary chamber, the supersonic
Informatlon(Flgure S3S12 and Table 33). In deep space, peam of pure benzenegg,g%; Aldrich Chemistry), which was
both the methylidyne radical and benzene have been detectedulated at 550 Torr with = 471+ 10 m s andS= 14.0+ 0.3
Methylidyne is ubiquitous in cold molecular clouds such as tlj&able S}, crossed perpendicularly with the methylidyne radicals in
Taurus Molecular Cloud (TMC-1) and Orion Molecular the main chamber leading to a collision eneggy(18.7+ 0.4 kJ
Cloud (OMC-1) holding temperatures as low as 1K mol * and a center of mass angley) of 58.6+ 0.3. For the

benzene has been detected toward the proto-planetary neb@ggesmndmg fully deuterated reactant experiment, the lignzene-

At , ;
CRL 618!° Benzene the simplest neutral @Huckel 10 mif’éﬁécgqugfrg'ztrgszﬁﬁg ivéiszclhggngzzgfdmﬁli
aromatic systemrepresents the key molecular buildinggp o+ 0.3 (rable S R o

block of polycyclic aromatic hydrocarbons (P‘_ﬁfl?swith The neutral reaction products entering the detector were ionized
spectroscopic signature inferred in the ultraviolet 4200 by electron impact (80 e¥then ltered according to mass-to-
nm) and the infrared (R0 m) regions via the charge rationy 2) utilizing a quadrupole mass spectrometer (QMS,

d its key decomposition produtiie resonance-stabilized
al_venallen“yf 49 radical are contemplated as long-lived

5.1. Experimental Section. The gas phase reactions of the
methylidyne (CH; X ) radical with benzene {8 X'A;) and
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Extrel, QC 150), and eventually recorded by a Daly type iouthors

counter? The detector is housed within aedentially pumped and Chao He Department of Chemistry, University dfatiawai
rotatable chamber that allows the collection of angularly resolved \janoa. Honolulu. Hawaii 96822 United States
time-of-ight (TOF) spectra in the plane of the both reactant beams. Aaron M. Thomas Department of Chemistry, University of

To obtain the information on the reaction dynamics, a forward- - . . .
convolution method is used to transform the LAB data into the center H?)\:\(/;?(Ij l%trgfgggg_’og8?%‘;&’62%\?" 96822, United States;

of mass frame (CMJ° which represents an iterative method

whereby user deed CM translational ener§{E;) and angular Galiya R. Galimova Department of Chemistry and ,
T() ux distributions are varied until a beéstf the laboratory- Biochemistry, Florida International University, Miami, Florida
frame TOF spectra and angular distributions are achieved. These 33199, United States; Samara National Research University, ,
functions comprise the reactiveedintial cross sectit{n, u), which Samara 443086, Russia

is taken to be separable into its CM scattering areel CM Alexander N. Morozov Department of Chemistry and

velocityu componentd(u, )  P(u) x T( ). The error ranges of Biochemistry, Florida International University, Miami, Florida
the P(Er) and T( ) functions are determined within theliinits of 33199, United States

the corresponding laboratoangular distribution and beam . . .
parameters (beam spreads, beam velocities) while maintainingc@Mplete contact information is available at:
good t of the laboratory TOF spectra. https://pubs.acs.org/10.1021/jacs.9b13269

5.2. Computational Section. Geometries of all species involved
in various chemical reactions accessing ¢ RES including Notes
reactants, intermediates, transition states, and products w ; Al
optimized at the B3LYP/6-311G(d.p) level of tHébfyand ®fRe authors declare no competingncial interest.
vibrational frequencies were computed using the same method.
Single-point energies were furthemed using the explicitly ACKNOWLEDGMENTS

nings correlation-consistent cc-pVTZ-f12 basis®8éthe GAUS- : : g i _ )
SIAN 0$” and MOLPRO 20£6 program packages were utilized for giéléliggggytosifg C(LaJ?wi\[/)eErsli:t)?ogf Oﬁi\?,;i? 4;idart13 EE)rli:dGaoz
the ab initio calculations. RidamspergeiKasselMarcus . . . .

dnternational University, respectively.

(RRKM) theon® ° was used to compute energy-dependent rat
constants of all unimolecular reaction steps on tHe FES
following the initial association of the CH radical with benzene andto REFERENCES

evaluate product branching ratios under single-collision conditionil) Jahn, H. A Teller, E. Stability of Polyatomic Molecules in

Add_itionally, RRKM-Master Equation (ME) calculdiionere Degenerate Electronic StateOrbital Degeneracyroc. R. Soc.
carried out to evaluate temperature- and pressure-dependent "Bl don. Ser. 1937 161 220 235
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