Supplementary Information for

Formation of Phosphine Imide (HN=PH₃) and its Phosphinous Amide (H₂N-PH₂) Isomer

Cheng Zhu,^{a,b} Alexandre Bergantini,^{a,b§} Santosh K. Singh,^{a,b} Ralf I. Kaiser^{a,b*}

^aDepartment of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822 (USA)

^bW. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822 (USA)

André K. Eckhardt, ^{c#*} Peter R. Schreiner^c

^cInstitute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen (Germany)

Ya-Syuan Huang,^d Bing-Jian Sun,^d Agnes H. H. Chang^{d*}

^dDepartment of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan

[§]Present address: Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca - CEFET/RJ, Av. Maracana 229, 20271-110, Rio de Janeiro, (Brazil)
[#]Present address: MIT Department of Chemistry, Cambridge, MA 02139 (USA)
*Correspondence to: hhchang@gms.ndhu.edu.tw, ake05@mit.edu, ralfk@hawaii.edu

Materials and Methods – Experimental

The experiments were performed at the W. M. Keck Research Laboratory in Astrochemistry.¹ The experimental setup consists of a contamination-free stainless steel ultra-high vacuum chamber (UHV) evacuated to a base pressure of a few 10⁻¹¹ Torr by magnetically levitated turbo molecular pumps coupled to oil-free scroll backing pumps. Within the chamber, a silver mirror substrate is interfaced to a cold finger, which is connected to a closed cycle helium compressor (Sumitomo Heavy Industries, RDK-415E). By utilizing a doubly differentially pumped rotational feedthrough (Thermionics Vacuum Products, RNN-600/FA/ MCO) and an UHV compatible bellow (McAllister, BLT106), the substrate is able to be rotated in the horizontal plane and to be translated vertically, respectively. The temperature of the silver wafer was monitored by a silicon diode sensor (Lakeshore DT-470) and regulated in a range of 5 to 300 K with a precision of ± 0.1 K by a programmable temperature controller (Lakeshore 336). After the wafer reached 5.0 ± 0.1 K, phosphine (PH₃, Sigma-Aldrich, 99.9995 %) and ammonia (NH₃, Matheson, 99.9992%) (Table S1) were co-deposited onto it via two glass capillary arrays. During the deposition, the total pressure of PH₃ and NH₃ in the main chamber was maintained at $(2.0 \pm 0.2) \times 10^{-8}$ torr with $(1.0 \pm 0.1) \times 10^{-8}$ torr for each species for about 32 minutes. Isotopically labeled ¹⁵N-ammonia (¹⁵NH₃, Sigma-Aldrich, 98% ¹⁵N) and heavy ammonia (ND₃, Sigma-Aldrich, 99% D) were utilized in duplicate experiments to observe infrared absorption and mass shifts of products. The overall thickness of the ice was determined using laser interferometry² with one helium-neon laser (CVI Melles Griot; 25-LHP-230) operating at 632.8 nm. The laser light was reflected at an angle of 2° relative to the ice surface normal. Considering the refractive indexes of pure ices $n_{\rm PH_2}$ = 1.51 ± 0.04 and $n_{\text{NH}_3} = 1.41 \pm 0.04$,³⁻⁶ the ice thickness was calculated to be 1410 ± 50 nm.

Mid-infrared (6,000 to 400 cm⁻¹) spectra of the ices were recorded utilizing a Nicolet 6700 Fourier transform infrared (FTIR) spectrometer with 4 cm⁻¹ spectral resolution. The FTIR spectra of the pristine ice is shown in Fig. S1. Detailed assignments of the peaks are compiled in Table S2.^{3, 7–11} The ice composition was determined via a modified Beer-Lambert law.¹² Peak areas are not guaranteed to be linear to ice thickness due to optical interference;¹³ however, this problem can be circumvented by selecting only weak bands.¹⁴ For PH₃, the average column density was determined to be $(1.9 \pm 0.5) \times 10^{18}$ molecules cm⁻² based on the integrated areas along with absorption coefficient of 5.1×10^{-19} cm molecule⁻¹ for 985 cm⁻¹ (v_2) band.³ The

average column density of NH₃ was calculated to be $(1.3 \pm 0.4) \times 10^{18}$ molecules cm⁻² based on the integrated areas along with absorption coefficient of 5.6×10^{-18} cm molecule⁻¹ for 1625 cm⁻¹ (v_4) band.^{15, 16} Therefore, the ratio of PH₃ and NH₃ was found to be (1.6 ± 0.5) : 1.

The ices were then isothermally irradiated at 5.0 ± 0.1 K with 5 keV electrons (Specs EQ 22-35 electron source) at a 70° angle to the ice surface normal for 15 min at currents of 0 nA (blank) and 20 nA (Table S1). Using Monte Carlo simulations (CASINO 2.42),¹⁷ the average and maximum penetration depths of the electrons were calculated to be 360 ± 40 nm and 830 ± 90 nm, respectively (Table S3), which are less than the 1080 ± 50 nm ice thickness ensuring no interaction between the impinging electrons and the silver substrate. With the parameters compiled in Table S3, the irradiation doses at 20 nA were calculated to be 0.8 ± 0.2 eV per PH₃ molecule and 0.4 ± 0.1 eV per NH₃ molecule. During the irradiation, in situ mid-infrared spectra of the ices were recorded every 2 minutes.

After the irradiation, the ices were heated to 300 K at a rate of 1 K min⁻¹ (temperature programmed desorption (TPD)). During the TPD phase, any subliming molecules were detected using a reflectron time-of-flight (ReTOF) mass spectrometer (Jordon TOF Products, Inc.) with single photon ionization¹ (Figs. 3 and 4, Figs. S2 - S4, Table S4 and S5). This photoionization process utilizes difference four wave mixing to produce vacuum ultraviolet light ($\omega_{vuv} = 2\omega_1 - \omega_1$ ω₂) (Table S4). The experiments were performed with 10.49 eV, 9.43 eV, 8.80 eV, and 8.20 eV photoionization energies to distinguish between the PNH₄ isomers. The 10.49 eV (118.222 nm) light was generated via frequency tripling ($\omega_{vuv} = 3\omega_1$) of the third harmonic (355 nm) of the fundamental of a Nd:YAG laser (YAG A) in pulsed gas jets of Xe. To produce 9.43 eV, the third harmonic (355 nm) of a Nd:YAG laser was used to pump a Coumarin 450 dye (0.20 g L⁻¹ ethanol) to obtain 445.132 nm (2.72 eV) (Sirah, Cobra-Stretch), which underwent a frequency doubling process to achieve $\omega_1 = 222.566$ nm (5.57 eV) (β -BaB₂O₄ (BBO) crystals, 57.4°). A second Nd:YAG laser (second harmonic at 532 nm) pumped LDS 722 dye (0.25 g L⁻¹ ethanol) to obtain $\omega_2 = 725$ nm (1.72 eV), which then combined with $2\omega_1$, using Xenon as a non-linear medium, generated $\omega_{vuv} = 136.462$ nm (9.43 eV) at 10^{12} photons per pulse. The settings for generating 140.860 nm (8.80 eV) light is the same as that for 136.462 nm (9.43 eV) except substitution of the LDS 722 dye by Coumarin 540A dye (1.60 g L⁻¹ ethanol) to produce 530 nm (2.34 eV) light. The settings for generating 151.200 nm (8.20 eV) light is also the same as that for 136.462 nm (9.43 eV) except substitution of the Coumarin 450 dye by Coumarin 503 dye (0.40 g L⁻¹ ethanol) to produce 499.256 nm (2.48 eV) light and using the LDS 722 dye to generate 715 nm (1.73 eV) light. The VUV light was spatially separated from other wavelengths (due to multiple resonant and non-resonant processes $(2\omega_1 + \omega_2; 3\omega_1; 3\omega_2)$) using a lithium fluoride (LiF) biconvex lens (ISP Optics) and directed 2 mm above the sample to ionize subliming molecules. The ionized molecules were mass analyzed with the ReTOF mass spectrometer where the arrival time to a multichannel plate is based on mass-to-charge ratios, and the signal was amplified with a fast preamplifier (Ortec 9305) and recorded with a personal computer multichannel scalar (FAST ComTec, P7888-1 E), which is triggered via a pulse delay generator at 30 Hz. Here the ReTOF signal is the average of 3600 sweeps of the mass spectrum in 4 ns bin widths, which corresponds to an increase of the substrate temperature of 2 K.

Materials and Methods – Theoretical

All computations were carried out with Gaussian 09, Revision D.01 and Gaussian 16, Revision A.03 (Fig. S5 - S6, Tables S6 - S11).^{18, 19} For geometry optimizations and frequency computations, the density functional theory (DFT) B3LYP functional²⁰⁻²² was employed utilizing the Dunning correlation consistent split valence basis set cc-pVTZ.²³ Based on these geometries, the corresponding coupled cluster²⁴⁻²⁷ CCSD(T)/cc-pVDZ, CCSD(T)/cc-pVTZ, and CCSD(T)/cc-pVQZ single point energies were computed and extrapolated to complete basis set limit²⁸ CCSD(T)/CBS with B3LYP/cc-pVTZ zero-point vibrational energy (ZPVE) corrections. The adiabatic ionization energies were computed by taking the ZPVE corrected energy difference between the neutral and ionic species that correspond to similar conformations. To determine the quality of the single-reference-based electron correlation methods, we performed T1 diagnostics. The T1 values for phosphine imide (HN=PH₃, 1), phosphinous amide (H₂N-PH₂, 4), and phosphinoammonium (H₃N=PH, 5) were computed to be 0.014, 0.011, and 0.0106, respectively, which are less than 0.02, thus confirming that the single-reference-based electron correlation methods ought to be reliable according to recommendations in the current literature.²⁹ The ionization energies were corrected for the Stark effect by 0.03 eV.³⁰ Natural bond orbitals were computed with the NBO6 program.³¹

Fig. S1 FTIR spectra of the phosphine (PH_3) + ammonia (NH_3) (a), phosphine (PH_3) + ¹⁵N-ammonia (¹⁵NH₃) (b), and phosphine (PH₃) + D-ammonia (ND₃) (c) ices before (black) and after (red) processing with energetic electrons.

Fig. S2 PI-ReTOF-MS data during the temperature programmed desorption (TPD) phase of the electron processed phosphine (PH₃) + heavy ammonia (ND₃) ice (PI = 10.49 eV).

Fig. S3 PI-ReTOF-MS data during the temperature programmed desorption (TPD) phase of the electron processed phosphine (PH₃) + heavy ammonia (ND₃) ice (PI = 10.49 eV). **a**, m/z = 50, NPH₃D⁺. **b**, m/z = 51, NPH₂D₂⁺. **c**, m/z = 52, NPHD₃⁺. **d**, m/z = 53, NPD₄⁺. The carriers of the peaks at 118 K and 153 K in **a** and 118 K in **c** are tentatively linked to NPHD₂⁺, NPHD₂⁺, and NPH₃D₂⁺ fragments of N₂PH₃D₂⁺/N₂PH₂D₃⁺/N₂PHD₅⁺, NP₂H₄D⁺/NP₂H₃D₂⁺/NP₂H₂D₃⁺, and N₂PH₃D₂⁺, respectively.

Fig. S4 Schematic representation of the formation of partially deuterated 1, 4, and 5 isomers from phosphine (PH₃) and heavy ammonia (ND₃). Radical-radical, insertion, and addition pathways are color coded in blue, red, and black, respectively.

Fig. S5 Bond characters of phosphine imide (HN=PH₃, 1).

We explored the bond characters of phosphine imide (1). The PN bond length of 1 (1.57 Å) is shorter than a P–N single bond (e.g., 1.77 Å in the anion of the salt Na⁺[H₃NPO₃]⁻) and is close to that of P=N double bonds of phosphazenes (1.56 Å in hexafluorocyclotriphosphazene (NPF₂)₃ and 1.60 Å in hexachlorocyclotriphosphazene (NPCl₂)₃).³² However, natural resonance theory (NRT) analysis found that the Wiberg index of the PN bond is 1.34 and that the zwitterionic contributor is the leading resonance structure (50%). The neutral PN double bond structure only has a minor contribution (< 1%). Furthermore, there is no π bonding orbital interaction but only σ bonding interaction between the nitrogen and phosphorus atoms (Fig. S4). These results indicate that **1** is best described as a zwitterion. The highest occupied molecular orbital (HOMO) and HOMO – 1 are located on the nitrogen atom and represent lone pair electrons and negative charges in *p*- and σ_{out} -type non-bonding orbitals (Fig. S4). This is in line with a previous computational investigation of the H₃PNH plus formaldehyde (H₂CO) reaction,³³ which starts with the attack of the nitrogen atom of the nucleophile (H₃PNH) on the electrophilic formaldehyde carbon.

0.00 eV (0 kJ mol⁻¹)

Fig. S6 Potential energy surface for intermolecular H-transfer between two phosphine imide (HNPH₃, **1**) molecules at CCSD(T)/CBS//B3LYP/cc-pVTZ including zero-point vibrational energy (ZPVE). The atoms are color coded in white (hydrogen), blue (nitrogen), and orange (phosphorous). The barrier of 211 kJ mol⁻¹ is slightly lower than the unimolecular isomerization barrier from **1** to **4** (214 kJ mol⁻¹). These high barriers suggest that isomer **1** is stable once generated.

 Table S1. List of experiments.

#	Precursors	Electron current (nA)	Irradiation time (min)	Photoionization Energy (eV)
1	$PH_3 + NH_3$	0 (blank)	-	10.49
2	$PH_3 + NH_3$	20	15	10.49
3	$PH_3 + {}^{15}NH_3$	20	15	10.49
4	$PH_3 + ND_3$	20	15	10.49
5	$PH_3 + NH_3$	20	15	9.43
6	$PH_3 + NH_3$	20	15	8.80
7	$PH_3 + NH_3$	20	15	8.20

Pristine ice, before irradiation (5 K)					
Position with NH ₃	Position with ¹⁵ NH ₃	Position with ND ₃			
(cm^{-1})	(cm^{-1})	(cm^{-1})			
985	985	984			
1057	1051	820			
1100	1100	1101			
1627	1623	1185			
2199	2199	2198			
2321	2321	2321			
2432	2431	Overlap with ND ₃			
3212	3205	Overlap with PH ₃			
3369, 3386	3360, 3377	2500			
New peaks after	r irradiation (5 K)				
1100, 1154	1094, 1140	Overlap with ND ₃			
1508	1503	Overlap with ND ₃			
2090	2080	Overlap with N=ND ₂			
2238	2238	2236			
2785	2776	2085			
3365, 3330	3160, 3320	2370			
	Position with NH_3 (cm ⁻¹) 985 1057 1100 1627 2199 2321 2432 3212 3369, 3386 New peaks after 1100, 1154 1508 2090 2238 2785 3365, 3330	Position with NH3 (cm ⁻¹)Position with $^{15}NH_3$ (cm ⁻¹)985985105710511100110016271623219921992321232124322431321232053369, 33863360, 3377New peaks after irradiation (5 K)1100, 11541094, 1140150815032090208022382238278527763365, 33303160, 3320			

Table S2. Infrared absorption peaks before and after irradiation for phosphine (PH₃) + ammonia $(NH_3) / {}^{15}N$ -ammonia $({}^{15}NH_3) / D$ -ammonia (ND_3) ices^a.

Note.

^a References: Shimanouchi (1977), Teles et al. (1989), Socrates (2004), Holt et al. (2004), Zheng et al. (2008), Turner et al. (2015).

Initial kinetic energy of the electrons, E_{init} (keV)	5	
Ice		$PH_3 + NH_3$
Irradiation current, <i>I</i> (nA)		20 ± 1
Total number of electrons		$(1.1 \pm 0.1) \times 10^{14}$
Average penetration depth, l_{ave} (nm) ^a		360 ± 40
Maximum penetration depth, l_{max} (nm) ^a	830 ± 90	
Average kinetic energy of backscattered electro	3.48 ± 0.35	
Fraction of backscattered electrons, f_{bs}^{a}	0.41 ± 0.04	
Average kinetic energy of transmitted electrons	0	
Fraction of transmitted electrons, f_{trans}^{a}	0	
Irradiated area, A (cm ²)	1.0 ± 0.1	
Doso (aV/molecula)	PH ₃	0.8 ± 0.2
	NH ₃	0.4 ± 0.1

Table S3. Data applied to calculate the average irradiation dose per molecule

Note:

^a Parameters obtained from CASINO software v2.42.

	Photoionization energy (eV)	$10.49 (3\omega_1)$	9.43	8.80	8.20
$2\omega_1 - \omega_2$	Flux $(10^{11} \text{ photons s}^{-1})$	12 ± 1	10 ± 1	10 ± 1	10 ± 1
	Wavelength (nm)	118.222	136.462	140.860	151.200
ω_1	Wavelength (nm)	355	222.566	222.566	249.628
Nd:YAG (YAG A)	Wavelength (nm)	355	355	355	355
Dye laser (DYE A)	Wavelength (nm)	-	445.132	445.132	499.256
Dye		-	Coumarin 450	Coumarin 450	Coumarin 503
ω_2	Wavelength (nm)	-	725	530	715
Nd:YAG (YAG B)	Wavelength (nm)	-	532	355	532
Dye laser (DYE B)	Wavelength (nm)	-	725	530	715
Dye		-	LDS 722	Coumarin 540A	LDS 722
	Nonlinear medium	Xe	Xe	Xe	Xe

Table S4. Parameters for the vacuum ultraviolet (VUV) light generation used in the present experiments^a.

Note:

^a The uncertainty for VUV photon energies is 0.01 eV.

Precursors		$PH_3 + NH_3$	$PH_3 + {}^{15}NH_3$	$PH_3 + NH_3$	$PH_3 + ND_3$	$PH_3 + ND_3$	$PH_3 + ND_3$
Photon energy (eV)		10.49	10.49	9.43	10.49	10.49	10.49
Molecular formula		NPH ₄	¹⁵ NPH ₄	NPH ₄	NPH ₃ D	NPH ₂ D ₂	NPHD ₃
Mass-to-charge ratio (m/z)		49	50	49	50	51	52
Sublimation	125 K	23791 ± 1200	24796 ± 1300	4756 ± 250	4014 ± 200	21586 ± 1100	10045 ± 1000
events	132 K	15156 ± 800	16089 ± 800	13707 ± 700	2490 ± 120	14737 ± 750	6310 ± 350
Ratio of 125 K to 132K		1.6 ± 0.1	1.5 ± 0.1	0.4 ± 0.1	1.6 ± 0.1	1.5 ± 0.1	1.6 ± 0.1

Table S5. Integrated peak areas for all sublimation events.

	B3LYP/cc-pVTZ + E _{ZPVE} ^a	E _{ZPVE} ^b	CCSD(T)/CBS	Relative Energy	Ionization Energy
	(hartree)	(hartree)	(hartree)	(eV)	(eV)
NH ₂ PH ₂	-398.520323	0.043570	-398.026933	0.00	8.60
$NH_2PH_2^+$	-398.211186	0.043428	-397.710843	8.60	-
NHPH ₃	-398.478365	0.041038	-397.988621	0.97	8.92
NHPH ₃ ⁺	-398.159975	0.039663	-397.659515	9.89	-
NH ₃ PH	-398.465332	0.046655	-397.974143	1.52	6.83
NH ₃ PH ⁺	-398.219902	0.047348	-397.723980	8.35	-
$HNHPH_2(TS1)$	-398.401195	0.037305	-397.898055	3.19	-
H ₂ NHPH (TS2)	-398.432365	0.039639	-397.924600	2.53	-

Table S6. Computed energies for NPH₄ isomers, corresponding positive ions, and transition states.

Notes:

^a B3LYP/cc-pVTZ energy with zero-point energy correction.

^b Zero-point vibrational energy at the B3LYP/cc-pVTZ level of theory.

Table S7. Computed Cartesian coordinates (Å) for NPH₄ isomers, corresponding radical cations, and transition states at the B3LYP/cc-pVTZ level of theory.

NH	$_2\mathrm{PH}_2$		
Ν	-1.111712	0.042431	-0.080271
Р	0.600608	-0.124199	-0.025677
Η	-1.540076	0.843052	0.359218
Η	-1.602414	-0.803933	0.161871
Η	0.951997	1.025124	-0.784132
Η	0.963357	0.501721	1.210101
NH	PH ₃		
Ν	0.026606	1.143623	0.000000
Р	0.026606	-0.422555	0.000000
Η	-0.885816	1.582736	0.000000
Н	-0.525988	-1.183988	1.075896
Н	-0.525988	-1.183988	-1.075896
Η	1.352468	-0.881793	0.000000
NH	₃ PH		
Р	-0.7921217	-0.0908793	0.0000000
Η	-0.8423248	1.3357677	0.0000000
Ν	1.1650933	0.0055579	0.0000000
Η	1.5104844	-0.9485761	0.0000000
Η	1.5291734	0.4690087	-0.8262458
Η	1.5291734	0.4690087	0.8262458
HN	HPH ₂ (Transitic	on state)	
Ν	1.1490460	-0.0492760	-0.0691830
Р	-0.5069770	0.0394140	-0.0475410
Η	1.6069490	-0.5588870	0.6907150
Η	-1.2468630	-1.1369590	-0.4372980
Н	-1.1185720	0.1995610	1.2250990
Η	0.3198130	1.2503000	-0.2811160
NH	₂ PH ₂ •+		
Ν	1.066753	0.000022	0.067952
Р	-0.575332	0.000025	-0.102572
Η	1.603581	-0.852204	-0.057984
Η	1.603707	0.852085	-0.058548
Η	-1.022166	-1.144100	0.589399
Η	-1.022416	1.143690	0.590048
NH	PH3•+		
Ν	-0.026631	1.200655	0.000000
Р	-0.026631	-0.476493	0.000000

Н	0.895064	1.653221	0.000000
Η	1.200009	-1.165029	0.000000
Η	-0.754593	-0.872693	1.133611
Н	-0.754593	-0.872693	-1.133611

NH₃PH•+

Р	-0.7698401	-0.0932361	0.0000000
Н	-0.8543994	1.3273179	0.0000000
Ν	1.1290689	0.0035083	0.0000000
Н	1.5277000	-0.9372796	0.0000000
Н	1.4853588	0.4912166	-0.8256236
Н	1.4853588	0.4912166	0.8256236

H₂NHPH (Transition state)

0.0337610
-0.0434280
-0.4407070
-0.2684600
1.0447020
0.0795540

Table S8. Computed vibrational frequencies (cm⁻¹) and infrared (IR) intensities (km mol⁻¹) for NPH₄ isomers, corresponding radical cations, and transition states at the B3LYP/cc-pVTZ level of theory.

NH ₂ PH ₂			NH ₂ PH ₂ ⁺⁺		
Normal mode	Frequency	IR Intensity	Normal mode	Frequency	IR Intensity
v1	347.87	21.0666	v1	410.6071	7.8102
v2	505.625	180.3711	v2	586.2442	204.0664
v3	812.2046	34.6466	<i>v</i> 3	729.8306	30.5157
v4	844.5904	3.6136	<i>v</i> 4	746.8128	0.7076
v5	916.2726	26.3378	<i>v</i> 5	928.0106	12.5058
v6	1082.3691	37.4717	<i>v</i> 6	1028.0853	31.5831
v7	1162.4376	28.8671	v7	1045.6572	56.2412
v8	1608.6295	17.6392	v8	1592.135	56.2412
v9	2289.437	145.4656	v9	2420.8168	6.3875
v10	2367.7668	94.3535	v10	2476.7568	4.9036
v11	3545.2003	6.8093	v11	3493.9604	219.4659
v12	3642.5956	23.7305	v12	3593.6493	161.8375
	NHPH ₃			NHPH ₃ ⁺⁺	
Normal mode	Frequency	IR Intensity	Normal mode	Frequency	IR Intensity
v1	382.0661	104.3082	v1	102.9265	106.2699
v2	769.0869	9.6992	v2	674.9166	53.4213
v3	778.8269	84.1786	v3	725.4999	19.7666
v4	897.7103	82.8175	<i>v</i> 4	797.2351	19.3111
v5	1083.9863	19.2095	v5	1008.0525	23.6069
v6	1116.0426	11.6375	v6	1040.2674	39.4435
v7	1131.4108	25.6501	v7	1079.9898	1.9719
v8	1214.4491	144.3989	v8	1086.4531	12.5251
v9	2274.1108	170.4879	v9	2462.5229	4.6526
v10	2312.1243	168.4068	v10	2503.1164	15.9136
v11	2489.7712	37.5464	v11	2503.6183	23.4703
v12	3563.9105	15.9966	v12	3425.4555	105.2917
	NH ₃ PH			NH ₃ PH ^{•+}	
Normal mode	Frequency	IR Intensity	Normal mode	Frequency	IR Intensity
v1	179.8998	2.4782	v1	180.4868	3.9893
v2	484.1324	14.0171	v2	561.7424	23.7836
v3	661.4541	4.0982	<i>v</i> 3	765.7437	2.3931
v4	716.3276	14.675	<i>v</i> 4	813.2515	16.6955
v5	978.2948	38.7621	<i>v</i> 5	1039.1896	42.0315
v6	1280.8821	65.2496	<i>v</i> 6	1415.5962	99.4336
v7	1649.4149	28.6705	v7	1640.4934	40.9537
v8	1660.5681	33.477	v8	1644.2637	46.372
v9	2322.3638	144.7158	v9	2387.554	16.41
v10	3449.2951	7.5069	v10	3388.8089	89.2074
v11	3533.2786	78.2337	v11	3469.8864	123.3789
v12	3563.2422	53.8665	v12	3483.7403	126.221
HN	HPH2 (TS1)	H_2	NHPH (TS2	2)
Normal mode	Frequency	IR Intensity	Normal mode	Frequency	IR Intensity

vi	1579.3802i	672.4869	vi	1600.2846i	1525.1211
<i>v</i> 1	627.9111	51.0202	v1	297.9648	18.6213
v2	698.6944	25.4492	v2	512.4325	94.0703
<i>v</i> 3	809.8643	38.294	<i>v</i> 3	697.454	64.4965
<i>v</i> 4	849.6906	46.1526	<i>v</i> 4	751.5197	5.6969
<i>v</i> 5	1018.9834	143.8556	<i>v</i> 5	1009.9825	27.2816
<i>v</i> 6	1066.2971	30.6975	<i>v</i> 6	1204.8038	9.8893
v7	1203.0071	21.682	v7	1519.1763	15.2431
<i>v</i> 8	2139.6229	153.5091	v8	1919.3918	1.8399
<i>v</i> 9	2212.5882	83.5726	v9	2360.3781	93.8395
v10	2353.3692	98.0388	v10	3493.0622	7.2564
v11	3395.0855	0.9136	v11	3633.3153	27.8101

Table S9. Comparison of experimental to computed ionization energies (CCSD(T)/CBS//B3LYP/cc-pVTZ + zero-point vibrational energy (ZPVE) corrections) of different nitrogen- and phosphorus- containing compounds with average deviations computed from the error limits. Combined error limits are used to obtain the corrected computed ionization energies.

Compounds	Experimental IE	Experimental	References	Computed IE	Computed IE –	Computed IE –	
_	(eV)	Error Limits		(eV)	Experimental IE (max)	Experimental IE (min)	
		(eV)			(eV)	(eV)	
Ammonia	10.070 ± 0.020	10.050 - 10.090	1	10.15	+0.060	+0.100	
NH ₃							
Phosphine	9.869 ± 0.002	9.867 - 9.871	1	9.82	-0.051	-0.047	
PH ₃							
Hydrogen cyanide	13.60 ± 0.01	13.59 - 13.61	1	13.57	-0.04	-0.02	
HCN							
Methinophosphide	10.79 ± 0.01	10.78 - 10.80	2	10.76	-0.04	-0.02	
НСР							
					Average	Average	
					-0.02 ± 0.05	0.00 ± 0.07	
					Error Limits	Error Limits	
					-0.07 to +0.03	-0.07 to +0.07	
					Combined Error Limits		
					± 0.07		

Notes.

Reference 1: Lias (2018)³⁴

Reference 2: Frost et al. (1973)³⁵

Table S10. Computed Cartesian coordinates (Å), energies (hartree), zero-point vibrational energies (ZPVE) (hartree), vibrational frequencies (cm⁻¹), and infrared (IR) intensities (km mol⁻¹) for ammonia (NH₃), phosphine (PH₃), hydrogen cyanide (HCN), and methinophosphide (HCP) and corresponding radical cations at the CCSD(T)/CBS//B3LYP/cc-pVTZ level of theory.

NH ₃				NH ₃	+		
Ν	0.000000	-0.000000	-0.079087	N	-0.000000	-0.000000	0.000000
Н	0.937803	-0.000000	0.306506	Н	-1.024664	-0.000000	0.000000
Н	-0.468902	0.812162	0.306506	Н	0.512332	0.887385	0.000000
Н	-0.468902	-0.812162	0.306506	Н	0.512332	-0.887385	0.000000
E = -5	6.5007645			E = -	-56.1259392		
ZPVE	= 0.0342460			ZPV	E = 0.0325720		
Freque	ency Inter	sity		Frequ	uency Inter	isity	
1067.3	138 146.	8591		869.9	9562 232.4	4392	
1676.8	499 16.8	512		1529	.6011 69.4	932	
1676.8	499 16.8	513		1529	.6013 69.4	927	
3459.6	2.39	99		3340	.0014 0		
3575.8	0.53	78		3514	.1724 277.4	4609	
3575.8	0.53	78		3514	.1725 277.4	4606	
PH ₃				PH ₃ •	+		
P	0.000000	-0.000000	-0.369144	P	-0.000000	-0.000000	-0.170317
H	1.194649	-0.000000	0.402418	H	0.018262	1.353626	-0.545210
H	-0.597325	1.034596	0.402418	H	1.163144	-0.692628	-0.545210
Н	-0.597325	-1.034596	0.402418	H	-1.181405	-0.660998	-0.545210
				-			
E = -3	42.7140405			E = -	-342.3528353		
ZPVE	= 0.0238100			ZPV	E = 0.0234560		
Б	τ.	•,		-	T (•,	
Freque	ency Inter	isity		Frequ	uency Inter	isity	
1020.6	1955 19.9	072		/35.0	5199 2.804	49	
1138.3	099 11.0	145		1039	.5952 6.69	89	
1138.3	794 11.0	144		1039	.5936 6.69	82	
23/9.1	/84 34.9	882		2442	.4551 13.6	J25	

2387.4078 67.7536 HCN C 0.000000 0.000000 -0.502032	2519.4441 51.1287 HCN ⁺⁺			
HCN C 0.000000 0.000000 -0.502032	HCN ⁺⁺			
C 0.000000 0.000000 -0.502032	nen			
C 0.000000 0.000000 -0.502032	C 0.000000 0.000000 -0.530335			
	N 0.000000 0.000000 0.688215			
N 0.000000 0.000000 0.655879	Н 0.000000 0.000000 -1.635498			
H 0.000000 0.000000 -1.5/895/				
F = -03.3125436	E = -92.8117700			
E = -95.5125450 ZPVF = 0.0164250	ZPVE = 0.0144460			
$\Sigma 1 V E = 0.0104250$				
Frequency Intensity	Frequency Intensity			
771.8606 34.1125	503.9549 11.4409			
771.8606 34.1125	741.9941 44.7645			
2200.5474 2.0382	1905.8395 16.5557			
3465.485 63.2406	3189.4461 285.7971			
НСР	HCP++			
C 0.000000 0.000000 -1.007293	C 0.000000 0.000000 -1.049586			
P 0.000000 0.000000 0.542255	P 0.000000 0.000000 0.562870			
1 0.00000 0.00000 0.072233	H 0.000000 0.000000 -2.145534			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 0.000000 0.000000 2.110001			
H 0.000000 0.000000 -2.090069				
$\begin{array}{c} H \\ H \\ C \\$	E = -379.1208937			
$ \begin{array}{c} H & 0.000000 & 0.000000 & 0.042255 \\ H & 0.000000 & 0.000000 & -2.090069 \\ E = -379.5170519 \\ ZPVE = 0.0138850 \end{array} $	E = -379.1208937 $ZPVE = 0.0130650$			
H = -379.5170519 $E = -379.5170519$ $E = -379.5170519$	E = -379.1208937 $ZPVE = 0.0130650$			
$ \begin{array}{l} \text{H} & 0.000000 & 0.000000 & 0.042233 \\ \text{H} & 0.000000 & 0.000000 & -2.090069 \\ \text{E} = -379.5170519 \\ \text{ZPVE} = 0.0138850 \\ \text{Frequency} & \text{Intensity} \\ \text{Teop 0.404} & -66.5025 \end{array} $	E = -379.1208937 $ZPVE = 0.0130650$ Frequency Intensity (12.00077 14.0014)			
$ \begin{array}{l} \text{H} & 0.000000 & 0.000000 & 0.042233 \\ \text{H} & 0.000000 & 0.000000 & -2.090069 \\ \text{E} = -379.5170519 \\ \text{ZPVE} = 0.0138850 \\ \text{Frequency} & \text{Intensity} \\ 709.0494 & 66.5025 \\ 709.0494 & 66.5025 \\ \end{array} $	$E = -379.1208937$ $ZPVE = 0.0130650$ Frequency Intensity $642.0067 \qquad 14.0614$ $(75.2410 \qquad 92.29)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E = -379.1208937 $ZPVE = 0.0130650$ Frequency Intensity $642.0067 14.0614$ $675.3419 83.28$ $1181.4006 1.5102$			
$\begin{array}{l} \text{H} & 0.000000 & 0.000000 & 0.042233 \\ \text{H} & 0.000000 & 0.000000 & -2.090069 \\ \text{E} = -379.5170519 \\ \text{ZPVE} = 0.0138850 \\ \text{Frequency} & \text{Intensity} \\ 709.0494 & 66.5025 \\ 709.0494 & 66.5025 \\ 1329.7237 & 0.1463 \\ 2246.0031 & 15.3657 \\ \end{array}$	E = -379.1208937 $ZPVE = 0.0130650$ Frequency Intensity $642.0067 14.0614$ $675.3419 83.28$ $1181.4996 1.5103$ $2225.9601 176.6135$			
C 0.000000 0.000000 -1.007293 P 0.000000 0.000000 0.542255	C 0.000000 0.000000 -1.049586 P 0.000000 0.000000 0.562870 H 0.000000 0.000000 -2.145534			

Table S11. Computed Cartesian coordinates (Å), energies (hartree), zero-point vibrational energies (ZPVE) (hartree), vibrational frequencies (cm⁻¹), and infrared (IR) intensities (km mol⁻¹) for the transition state of intermolecular H-transfer between two phosphine imide (HNPH₃, **1**) molecules.

-		NET CON	
Transition state $(2 \text{ HNPH}_3 \rightarrow 2 \text{ H}_2\text{NPH}_2)$ (<i>Cs</i>)			
N -1 10	3256 -1 211343	0.000000	
P -1.72	0.284035	0.000000	
Н –1.729	-2.006867	0.000000	
Н –2.609	9761 0.591450	-1.072386	
Н –2.609	0.591450	1.072386	
Н –0.434	4014 1.124769	0.000000	
N 1.120	0144 1.220745	0.000000	
P 1.714	4929 -0.287758	0.000000	
Н 1.774	1.994229	0.000000	
Н 2.612	2425 -0.599376	-1.067562	
Н 2.612	2425 -0.599376	1.067562	
Н 0.360	0404 -1.117310	0.000000	
	o		
E = -797.030	9476 2050 - 7050 524542		
E[CCSD(1)/C	[BS] = -/95.9534542		
ZPVE = 48.83	8/6 kcal mol-1		
$v_i = 126/.3$ cr	n-1		
Frequency	Intensity		
-1267.328	279.1082		
88.2856	2418.2115		
92.2544	2.2544 20.8167		
174.9409	1.5006		
203.7356	23.65		
234.3484	29.7009		
424.528	9.1398		
443.6295	120.372		
469.8318	72.4186		
680.2522	1798.1895		
781.3588	0.2313		
802.8763	15.8852		
856.16	0.2448		
901.0613	73.1429		
954.1316	6.3444		
1011.0857	1172.2736		
1051.7761	14.6685		
1076.5199	22.3075		
1092.8477	0.0099		

1135.67	2.1412
1185.4681	3.3951
1189.4863	92.2711
1497.2238	256.9305
1558.7658	512.2684
2286.3961	132.2571
2299.1268	231.6814
2312.5298	138.6859
2323.137	113.8021
3527.4452	1.7321
3542.5036	3.5992

References

- 1. B. M. Jones and R. I. Kaiser, J. Phys. Chem. Lett., 2013, 4, 1965-1971.
- 2. L. Zhou, S. Maity, M. Abplanalp, A. Turner and R. I. Kaiser, Astrophys. J., 2014, 790, 38.
- A. M. Turner, M. J. Abplanalp, S. Y. Chen, Y. T. Chen, A. H. Chang and R. I. Kaiser, *Phys. Chem. Chem. Phys.*, 2015, 17, 27281-27291.
- 4. A. Dawes, R. J. Mukerji, M. P. Davis, P. D. Holtom, S. M. Webb, B. Sivaraman, S. V. Hoffmann, D. A. Shaw and N. J. Mason, *J. Chem. Phys.*, 2007, **126**, 244711.
- 5. M. Satorre, J. Leliwa-Kopystynski, C. Santonja and R. Luna, *Icarus*, 2013, 225, 703-708.
- 6. B. Wood and J. Roux, J. Opt. Soc. Am., 1982, 72, 720-728.
- 7. T. Shimanouchi, J. Phys. Chem. Ref. Data, 1977, 6, 993-1102.
- 8. J. H. Teles, G. Maier, B. Andes Hess Jr and L. J. Schaad, Chem. Ber., 1989, 122, 749-752.
- 9. G. Socrates, *Infrared and Raman Characteristic Group Frequencies*, John Wiley & Sons, Ltd., New York, 3rd edn., 2004.
- 10. J. S. Holt, D. Sadoskas and C. J. Pursell, J. Chem. Phys., 2004, 120, 7153-7157.
- 11. W. Zheng, D. Jewitt, Y. Osamura and R. I. Kaiser, Astrophys. J., 2008, 674, 1242.
- 12. J. Hollenberg and D. A. Dows, J. Chem. Phys., 1961, 34, 1061-1062.
- 13. B. Teolis, M. Loeffler, U. Raut, M. Famá and R. Baragiola, *Icarus*, 2007, **190**, 274-279.
- K. I. Öberg, R. T. Garrod, E. F. Van Dishoeck and H. Linnartz, *Astron. Astrophys.*, 2009, 504, 891-913.
- 15. M. Bouilloud, N. Fray, Y. Benilan, H. Cottin, M. C. Gazeau and A. Jolly, *Mon. Not. Roy. Astron. Soc.*, 2015, **451**, 2145-2160.
- 16. S. A. Sandford and L. J. Allamandola, *Astrophys. J.*, 1993, 417, 815-825.
- D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez and R. Gauvin, *Scanning*, 2007, 29, 92-101.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,

M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

- Gaussian 16, Revision A.03; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian Inc., Wallingford CT 2016.
- 20. A. D. Becke, *Physical Review A*, 1988, **38**, 3098-3100.
- 21. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 22. C. Lee, W. Yang and R. G. Parr, *Physical Review B*, 1988, **37**, 785-789.
- 23. J. Dunning, Thom H., J. Chem. Phys., 1989, 90, 1007-1023.
- 24. J. Čížek, J. Chem. Phys., 1966, 45, 4256-4266.
- 25. R. J. Bartlett, J. D. Watts, S. A. Kucharski and J. Noga, *Chem. Phys. Lett.*, 1990, 165, 513-522.
- 26. K. Raghavachari, Annu. Rev. Phys. Chem., 1991, 42, 615-642.
- 27. J. F. Stanton, Chem. Phys. Lett., 1997, 281, 130-134.
- 28. K. A. Peterson, D. E. Woon and T. H. Dunning, J. Chem. Phys., 1994, 100, 7410-7415.
- 29. T. J. Lee and P. R. Taylor, Int. J. Quantum. Chem., 1989, 36, 199-207.
- C. Zhu, R. Frigge, A. Bergantini, R. C. Fortenberry and R. I. Kaiser, *Astrophys. J.*, 2019, 881, 156.

- E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, NBO, version 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2013.
- 32. H. Sabzyan and Z. Kalantar, J. Mol. Struct.: THEOCHEM, 2003, 663, 149-157.
- 33. W. C. Lu, C. B. Liu and C. C. Sun, J. Phys. Chem. A, 1999, 103, 1078-1083.
- Sharon G. Lias, "Ionization Energy Evaluation" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303, 2018.
- 35. D. Frost, S. Lee and C. McDowell, Chem. Phys. Lett., 1973, 23, 472-475.