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ABSTRACT: The gas-phase reaction between the 1-indenyl (C9H7
•) radical and

the cyclopentadienyl (C5H5
•) radical has been investigated for the first time using

synchrotron-based mass spectrometry coupled with a pyrolytic reactor. Soft
photoionization with tunable vacuum ultraviolet photons afforded for the isomer-
selective identification of the production of phenanthrene, anthracene, and
benzofulvalene (C14H10). The classical theory prevalent in the literature proposing
that radicals combine only at their specific radical centers is challenged by our
discovery of an unusual reaction pathway that involves a barrierless combination of
a resonantly stabilized hydrocarbon radical with an aromatic radical at the carbon
atom adjacent to the traditional C1 radical center; this unconventional addition is
followed by substantial isomerization into phenanthrene and anthracene via a
category of exotic spiroaromatic intermediates. This result leads to a deeper
understanding of the evolution of the cosmic carbon budget and provides new
methodologies for the bottom-up synthesis of unique spiroaromatics that may be relevant for the synthesis of more complex
aromatic carbon skeletons in deep space.

■ INTRODUCTION
Since the first isolation of 9,9′-spirobifluorene (C25H16) by
Clarkson and Gomberg in 1930,1 aromatic spiro hydro-
carbons�hydrocarbons carrying one atom common to two
rings of orthogonally rigid structures (Scheme 1)�have
attracted extensive attention from the organic preparative
chemistry, physical organic chemistry, medicinal, and material
science communities for use as semiconductors2 and
fluorescence dyes.3 This significance is based on the develop-
ment of spirane-centered optoelectronic devices such as
organic light-emitting diodes (OLEDs) with the spiro
compound distinctively separating the hole and the electron;
this spirane motif is central in minimizing the singlet−triplet
energy splitting4 upon charge transfer considering the
intramolecular donor−acceptor moiety augmented by spiro
conjugation5 and spiro aromaticity.6 Although the spiro center
formally interrupts the continuous conjugation and overlap of
the spiro-fused π systems, essential properties linked with
aromaticity like thermodynamical stability, aromatic ring
currents, and nuclear shifts are still monitored for ladderized
spirobifluorenes and indeno-spirobifluorenes.7,8 The chirality
of aromatic spiranes not only enables essential bactericidal,
fungicidal, anticancer, and herbicidal properties9 but also
reveals circularly polarized luminescence such as for 10,10′-
spirobi(indeno[1,2-b][1]benzothiophene) derivatives.10,11

From the fundamental viewpoints of electronic structure
theory and chemical bonding, spiro motif in polycyclic
aromatic hydrocarbons (PAHs)�molecules carrying fused
benzene rings�have been advocated as vital reaction
intermediates in molecular mass growth processes leading via
nanotubes12 and fullerenes (C60, C70)

13 to carbonaceous
nanostructures (grains, soot) in high-temperature combustion
systems and circumstellar envelopes of carbon stars (IRC +
10216) along with planetary nebulae as their descendants (TC
1).14,15 However, although aromatic structures have been
discussed as possible carriers of the diffuse interstellar bands
(DIBs)16 and of unidentified infrared emissions (UIRs)17 with
PAH-like motif accounting for up to 30% of the cosmic carbon
budget,18 the fundamental processes, which initiate and direct
the formation of spirane-centered aromatics, have been
inconclusive on the molecular level. Although proposed by
Melius19−21 and suggested for the self-reaction of cyclo-
pentadienyl radicals,22−25 not a single experiment has
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documented the critical role of spirane-type aromatic
intermediates in the gas-phase preparation of PAHs. This
classifies spiranes as one of the most elusive classes of organic
transient species in physical organic chemistry, computational
chemistry, combustion sciences, and astrophysics.
Here, we report compelling evidence on the critical role of

aromatic spiro transients in the gas-phase formation of
phenanthrene (C14H10, p1), and anthracene (C14H10, p2), as
the simplest, 14π-representative of helicenes and acenes,
respectively, accessed through the reaction of the aromatic
and resonantly stabilized 1-indenyl radical (C9H7

•) with the
cyclopentadienyl radical (C5H5

•) in a high-temperature
chemical microreactor (Figure 1). Validated through electronic
structure calculations, discrete spiroaromatic hydrocarbon
radical transients�1a′,6a′-dihydro-5′H-spiro[cyclopentane-
1,1′-cyclopropa[a]indene]-2,4-dienyl (i3), 4a′H-spiro-
[cyclopentane-1,2′-naphthalene]-2,4-dienyl (i4), 9b,9c-dihy-
dro-3H-cyclopentadiene[2,3]cyclopropa[1,2-a]naphthalenyl
(i5), spiro[bicyclo[3.1.0]hexane-6,2′-inden]-2-enyl (i12), and
spiro[cyclohexane-1,2′-indene]-2,5-dienyl (i13) (C14H11

•)�
prepared through carbon−carbon coupling of the five-
membered rings from the doublet radical reactants were
revealed to be essential in the gas-phase preparation of

phenanthrene (C14H10, p1) and anthracene (C14H10, p2).
Cemented through the isomer-selective identification of
phenanthrene (C14H10, p1), anthracene (C14H10, p2), and
benzofulvalene (C14H10, p3) in a molecular beam via fragment-
free, soft photoionization by tunable synchrotron vacuum
ultraviolet (VUV) light coupled with a reflectron time-of-flight
mass spectrometer (Re-TOF-MS;26−28 Supporting Informa-
tion), these findings afford persuasive testimony on a hitherto
elusive class of aromatic, reactive intermediates involved in
molecular mass growth processes of aromatics in our universe:
spiroaromatics.

■ RESULTS
A representative mass spectrum recorded at a photon energy of
9.50 eV for the reaction of the 1-indenyl (C9H7

•) radical with
the cyclopentadienyl (C5H5•) radical at 1473 ± 10 K is
displayed in Figure 2b. Control experiments of helium-seeded
1-bromoindene and anisole within the identical reactor were
also carried out by keeping the silicon carbide tube at 298 K
(Figure 2a). A comparison of both mass spectra provides
compelling evidence that the signal at m/z = 178 (C14H10

+)
and 180 (C14H12

+) originates from the 1-indenyl−cyclo-
pentadienyl reaction at 1473 ± 10 K; this signal is clearly

Scheme 1. Simplest Spirane Spiro[2.2]penta-1,4-diene (C5H4; 1) along with Spirobiindene (C17H12; 2) and Spirobifluorene
(C25H16; 3)

Figure 1. Dominant reaction pathways for the indenyl (C9H7
•) plus cyclopentadienyl (C5H5

•) reaction calculated at the G3(MP2,CC)/
B2PLYPD3/6-311G(d,p) + ZPE(B2PLYPD3/6-311G(d,p)) level of theory. Traditional pathways extracted from ref 29 are colored in black, while
the newly calculated channels are color-coded in red. The values on top of the arrows indicate energies of the transition states. All energies are given
in kJ mol−1 with respect to the energy of the separated reactants. Atoms are colored in black (carbon) and gray (hydrogen).
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absent in the control experiment. Accounting for the molecular
weight of the reactants (C9H7

•, 115 amu; C5H5
•, 65 amu) and

the products (C14H10, 178 amu; C14H12, 180 amu), the
formation of molecules with the formula C14H12 can be linked
to the radical−radical recombination of 1-indenyl with
cyclopentadienyl; molecules with the molecular formula
C14H10 can be formed from C14H12 through the loss of two
hydrogen atoms. Further, ion counts are observable at m/z =
128 (C10H8

+), 129 (13CC9H8
+), 130 (C10H10

+), 142
(C11H10

+), and 152 (C12H8
+; Figure S1). It should be

highlighted that under identical microreactor conditions, the
cyclopentadienyl (C5H5

•) self-reaction was found not to lead
to the formation of anthracene or phenanthrene.26 Con-
sequently, the analysis of the mass spectra of the present
experiments alone reveals that the reaction of 1-indenyl
(C9H7

•) with the cyclopentadienyl (C5H5
•) radical reveals

vital molecular mass growth processes synthesizing hydro-
carbon molecule(s) with the molecular formulae C14H10 and
C14H12 in the gas phase.
A detailed analysis of the corresponding photoionization

efficiency (PIE) curves, which report the intensity of the ions
at m/z = 178 (C14H10

+) and 180 (C14H12
+) as a function of the

photon energy from 7.30 to 9.0 eV, will allow for the
identification of the structural isomers present at the relevant
mass. The experimental PIE curve at m/z = 178 can be
replicated by the sum of three C14H10 isomers: phenanthrene
(C14H10, p1), anthracene (C14H10, p2), and benzofulvalene
(C14H10, p3; Figure 3). The onset of the ion counts at 7.40 ±

Figure 2. Photoionization mass spectra recorded at a photon energy
of 9.50 eV for the indenyl (C9H7

•) plus cyclopentadienyl (C5H5
•)

reaction at a temperature of 298 K (a) and 1473 ± 10 K (b). The
insets highlight ion signals from m/z = 170 to 190 at 298 K (open
circles) and 1473 ± 10 K (solid line), respectively.

Figure 3. Photoionization efficiency (PIE) curves for products of interest formed in the reaction of indenyl (C9H7
•) with cyclopentadienyl (C5H5

•)
at a reactor temperature of 1473 ± 10 K. (a) Fit (red) of the reference PIE curves of phenanthrene (C14H10, green) and anthracene (C14H10, blue)
to the experimental m/z = 178 data (black) along with the zoomed range from 7.3 to 8.5 eV (b). (c) Fit (red) with the addition of the reference
PIE curve of the ground electronic state of the benzofulvalene cation (12A″, IE = 8.05 ± 0.05 eV, magenta). (d) Fit (red) of the further addition of
the reference PIE curve of the first excited state of the benzofulvalene cation (22A″, IE = 8.74 ± 0.05 eV, orange). The error bars consist of two
parts: ±10% based on the accuracy of the photodiode and a 1 σ error of the PIE curve averaged over the individual scans.
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0.05 eV correlates nicely with the NIST-evaluated adiabatic
ionization energy (IE) of anthracene (p2) of 7.439 ± 0.006 eV
(Figure 3a−d). Additional ion counts from phenanthrene
(p1), which has an adiabatic ionization energy (IE) of 7.891 ±
0.001 eV,27 are also critical; nevertheless, ion counts from
phenanthrene (C14H10, p1) and anthracene (C14H10, p2) alone
cannot replicate the experimental PIE curve. This discrepancy
can be resolved by including a third isomer: benzofulvalene
(C14H10, p3). The PIE curve of benzofulvalene (C14H10, p3) is
unknown and hence has to be provided computationally
(Supporting Information). The incorporation of ion counts
from ionization of benzofulvalene (C14H10, p3) to the ground
electronic state of the benzofulvalene cation (12A″, IE = 8.05 ±
0.05 eV) can replicate the experimental data up to 8.6 eV
(Figure 3c); further inclusion of the first excited state of the
benzofulvalene cation (22A″, IE = 8.74 ± 0.05 eV) provides an
overall good match up to 9.0 eV of the experimental PIE curve
(Figure 3d). Therefore, we may conclude that within our error
limits, phenanthrene (C14H10, p1), anthracene (C14H10, p2),
and benzofulvalene (C14H10, p3) contribute to the signal at m/
z = 178 with the branching ratios of the ion counts of 19.3, 8.4,
and 72.3%, respectively. Absolute photoionization cross
sections of benzofulvalene (p3) are unknown and hence
cannot be satisfactorily computed with accuracy levels of ±
10%. However, accounting for the photoionization cross
sections of anthracene (p2) and phenanthrene (p1) of 16.7
± 0.9 Mb and 17.2 ± 0.9 Mb, respectively, for 9.0 eV,30

fractions of phenanthrene (p1) and anthracene (p2) of 63 ±
5% and 37 ± 5%, respectively, can be extracted. The
experimental PIE curve of benzofulvalene (p3) can be
obtained by subtracting the contributions from anthracene
(p2) and phenanthrene (p1) and hence is provided in Figure
S2. Overall, the detailed analysis of the PIE curve at m/z = 178
reveals contributions from three isomers: phenanthrene
(C14H10, p1), anthracene (C14H10, p2), and benzofulvalene
(C14H10, p3). However, the quantification of anthracene
(C14H10, p2) and phenanthrene (C14H10, p1) strongly
contradicts previous electronic structure and kinetic calcu-
lations,29 which deduced that the reaction of 1-indenyl with
cyclopentadienyl should lead under our experimental con-
ditions to a nearly exclusively benzofulvalene (p3) with upper
limits of phenanthrene (p1) of 1%, but not to anthracene
(C14H10, p2). The calculations also suggested that benzofulva-
lene (p3) can be efficiently converted to phenanthrene
(C14H10, p1) via a secondary reaction of hydrogen atom-
assisted isomerization at high temperatures, with the computed
relative yield of anthracene (C14H10, p2) being only 2% at
most at 1500 K. These deviations suggest that an under-
standing of the 1-indenyl−cyclopentadienyl radical−radical
reaction is in its infancy with key reaction pathways to, e.g.,
anthracene (C14H10, p2) lacking. These discrepancies call for a

systematic computational investigation of the 1-indenyl−
cyclopentadienyl reaction beyond the traditional mechanisms,
leading to phenanthrene (p1) and benzofulvalene (p3; Figure
1 and Table S1).

■ DISCUSSION
Reaction pathways of the 1-indenyl radical with the cyclo-
pentadienyl radical are compiled in Figure 1.29 Traditionally,
recombination of both radical reactants with the radical centers
located at the C1 carbon atoms leads to the 1-(cyclopenta-2,4-
dien-1-yl)-1H-indene intermediate (C14H12, i1) via carbon−
carbon single bond coupling. The atomic hydrogen loss to
doublet radical intermediate i2 (C14H12) is endoergic by 315
kJ mol−1. This intermediate can undergo yet another hydrogen
loss preparing benzofulvalene (p3) or undergoes ring closure
to tetracyclic spirane intermediate i3, which then rearranges
through ring opening to the tricyclic spirane structure i4.
Eventually, this doublet radical undergoes ring contraction or
ring opening, yielding i5 and i6, respectively. Both
intermediates may isomerize to i7, which undergoes
unimolecular decomposition through hydrogen atoms accom-
panied by aromatization and formation of phenanthrene (p1).
The classical radical−radical recombination mechanism at the
radical centers at the C1 atoms is unlikely to lead to anthracene
(p2) in an overall endoergic reaction (87 kJ mol−1) because
the i4 → i6 → i9 → p2 route features much higher energy
barriers than i4 → i5 → i7 → p1. A hitherto overlooked
pathway involving the reaction sequence i4 → i8 → i9
followed by hydrogen loss can access anthracene (p2) but is
also not competitive compared to i4 → i5 → i7 → p1. A
statistical treatment29 of these reaction pathways starting from
1-(cyclopenta-2,4-dien-1-yl)-1H-inden-1-yl (C14H11) and 1H-
inden-1-yl-2,4-cyclopentadien-1-ylidene (i2) predicts branch-
ing ratios of benzofulvalene (p3) to phenanthrene (p1) of 99.5
to 0.5%, and 98.9 and 1.1%, respectively, with practically no
anthracene (p2) formed. The incorporation of a hydrogen
atom-assisted isomerization of benzofulvalene (p3) opens up
the production of anthracene (p2), but only at a level of 2%
compared to phenanthrene (p1; 98%).29 Clearly, the predicted
ratio of phenanthrene (p1) to anthracene (p2) of 49 ± 5 does
not match the experimentally derived ratio of 1.7 ± 0.5.
Therefore, a key pathway to anthracene (p2) is still lacking.
The classical reaction pathway as outlined in the

aforementioned paragraph proceeds via recombination of
cyclopentadienyl with the radical site on the C1 (C3) atom
of 1-indenyl (C9H7

•). However, the electronic structure of 1-
indenyl can be described in terms of resonance allylic
structures with radical positions on C1 and C3 and a methylic
structure with the radical position on C2 (Figure 4). The two
resonance structures correspond to the 2A2 and 2B1 electronic

Figure 4. Resonance structures of the 1-indenyl radical (left) and its frontier molecular orbitals (right). The numbers show spin densities on the C1
(C3) and C2 atoms calculated at the B2PLYPD3/6-311G(d,p) level of theory.
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states in the cyclopentadienyl radical (C5H5
•), which are nearly

degenerate in energy for C5H5.
31−33 Although the singly

occupied molecular orbital (SOMO) in indenyl does not
involve a contribution from the pz orbital of C2, the highest
doubly occupied orbital (HOMO), which is only 0.52 eV
lower in energy, shows a significant role of pz(C2) (Figure 4).
The calculated spin density on C2, −0.38 e, is roughly a factor
of 2 lower by the absolute value than the spin densities on C1
and C3, +0.65 e. Owing to the significant spin density on C2, a
barrierless addition of C5H5 to this atom is also feasible,
although this process is less exoergic by 134 kJ mol−1 than the
addition to C1 (C3) exoergic by 220 kJ mol−1. Thus,
considering the resonance structures and the spin density
distribution in the 1-indenyl radical, one can rationalize a
previously elusive barrierless radical−radical recombination of
the cyclopentadienyl radical (C5H5

•) with the C2 atom of 1-
indenyl (C9H7

•), leading to 2-(cyclopenta-2,4-dien-1-yl)-2H-
indene (i10) via carbon−carbon bond coupling. Two
successive hydrogen atom losses form 2-(cyclopenta-2,4-dien-
1-ylidene)-2H-indene (p4) via 2H-indene-2,2-diyl-cyclopenta-
diene (i11). Note that, p4 has an adiabatic IE of 7.02 eV,
which is much lower than the experimental onset of the ion
counts at 7.40 ± 0.05 eV. Hence, the formation of p4 can be
eliminated as a predominant product. The key feature of 2H-
indene-2,2-diyl-cyclopentadiene (i11) is its ability to isomerize
to the spirane radical (i12) followed by ring opening to a
second spirane radical (i13). Considering the inherent barriers
along these pathways, the reaction sequence i11 → i12 → i13
→ i9 involving two distinct spirane structures is slightly
energetically favorable compared to i11 → p4 + H, by 26 kJ
mol−1 considering the rate-controlling transition state for the
i12 → i13 step; this pathway terminates through atomic
hydrogen loss accompanied aromatization and preparation of
anthracene (p2). Note that i10 can alternatively lose the
hydrogen atom from the cyclopentadienyl moiety, leading to
intermediate i14, which then easily isomerizes to i3 thus
merging onto the traditional reaction pathway toward
phenanthrene. However, since i14 resides 84 kJ mol−1 higher
in energy than i11, the i10 → i14 channel is unlikely to
compete with i10 → i11. According to RRKM master equation
calculations, at the experimental conditions, the unimolecular
decomposition of i11 to p4 + H (98%) prevails over the
multistep pathway to anthracene (p2) (2%), whereas the yield
of phenanthrene (p1) is predicted to be negligible. Also, a fast
hydrogen atom-assisted isomerization of p4 predominantly
leads to the formation of anthracene (p2), whereas the relative
yield of phenanthrene (p1) in the p4 + H reaction is predicted
to be ∼1%. Overall, this reaction sequence can provide the
“missing” source of anthracene (p2) as experimentally detected
in the radical−radical reaction of 1-indenyl with cyclo-
pentadienyl. The phenanthrene (p1)-to-anthracene (p2)
branching ratio is thus mostly controlled by the initial
branching in the entrance channel of the 1-indenyl-cyclo-
pentadienyl radical−radical reaction between the addition of
cyclopentadienyl to the C1 (C3) and C2 atoms in 1-indenyl.
Accurate theoretical evaluation of the branching ratio for the
two barrierless recombination channels is a complex dynamics
problem, which can be in principle solved, e.g., through
variable reaction coordinate transition state theory (VRC-
TST) calculations. However, such calculations are extremely
time-consuming and are beyond the scope of the present work.
Based on the experimentally measured phenanthrene (p1)-to-
anthracene (p2) branching ratio, the branching between

cyclopentadienyl radical addition to C1 (C3) and C2 should
be approximately 2:1.

■ CONCLUSIONS
To conclude, our combined experimental and computational
investigation of the reaction of the aromatic, resonantly
stabilized 1-indenyl radical (C9H7

•) with the cyclopentadienyl
radical (C5H5

•) reveals exotic reaction dynamics to an
aromatic molecule�anthracene (C14H10)�which strongly
contradicts an exclusive reaction mechanism of two radicals
initiated by their recombination at the C1 radical centers. The
unexpected reaction route engages a barrierless recombination
of a doublet radical with an aromatic, resonantly stabilized
radical at the central, C2 carbon atom of the allyl motif
followed by extensive isomerization through exotic spiroar-
omatic doublet radical transients (i12, i13), thus connecting
three previously disjointed concepts on the formation of
aromatic molecules in the gas phase: resonance stabilization,
aromaticity, spiro compounds. The key in the elucidation of
the previously unknown reaction pathways to PAHs as
provided here for reactions between two radicals is the
isomer-selective identification of structural isomers through
soft photoionization exploiting tunable vacuum ultraviolet
light�a task that cannot be accomplished through traditional
electron impact ionization of hydrocarbons34−36 and merging
the experimental results with sophisticated electronic structure
calculations. The unconventional reaction dynamics revealed
here represents a benchmark of the recombination of two
radicals holding five-membered rings and provides a versatile
concept for gas-phase molecular mass growth processes to
aromatic molecules and even three-dimensional nanostruc-
tures. Expanding the complexity, the self-recombination of two
1-indenyl radicals (C9H7

•) is therefore forecasted to synthesize
an unprecedented variety of structural PAH isomers�
tetracene, [4]helicene, [4]phenacene (C18H12)�as simplest
representatives of acenes, helicenes, and phenacenes, thus
fundamentally contradicting traditional textbook knowledge of
two radicals solely recombining at their unique radical centers
and opening up novel pathways and a unified concept to
molecular mass growth processes of aromatic structures in
deep space through recombination of two radical species.

■ MATERIALS AND METHODS
Experimental Methods. The experiments were performed at the

Chemical Dynamics Beamline (9.0.2.) of the Advanced Light Source
(ALS) using a high-temperature chemical reactor consisting of a
resistively heated silicon carbide (SiC) tube of 20 mm heating length
and 1 mm inner diameter.37 This device was located inside the source
chamber of a molecular beam setup, which was equipped with a
Wiley−McLaren reflectron time-of-flight mass spectrometer (Re-
TOF-MS).38 The indenyl radical (C9H7

•) was prepared in situ by
pyrolysis of the 1-bromoindene (C9H7Br) precursor synthesized in
house using the procedure reported in previous work,39 whereas a
continuous beam of the cyclopentadienyl radical (C5H5

•) was
prepared in situ through the pyrolysis of anisole (CH3OC6H5;
Sigma-Aldrich).26 The reactants were seeded in helium carrier gas at
total pressures of 150 ± 10 torr at the reactor inlet through a 0.2 mm
nozzle. The temperature of the SiC tube was determined using a
Type-C thermocouple to be 1473 ± 10 K. The precursor anisole
(CH3OC6H5; Sigma-Aldrich) was kept in a bubbler, whereas the 1-
bromoindene (C9H7Br) precursor was stored in a Swagelok
particulate filter. Both precursors were located outside the chamber
and were maintained at room temperature of 298 ± 3 K. At 1473 K,
each precursor dissociated to the corresponding radical in situ as
demonstrated previously26,37,40 followed by the reaction of the
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indenyl (C9H7
•) and cyclopentadienyl (C5H5

•) radicals. The products
formed in the reactor passed through a 2 mm skimmer located 10 mm
downstream of the reactor and entered the main chamber, which
houses the Re-TOF-MS. The neutral products within the supersonic
molecular beam were then photoionized in the extraction region of
the mass spectrometer by utilizing quasi-continuous tunable
synchrotron vacuum ultraviolet (VUV) light. VUV single photon
ionization represents essentially a fragment-free ionization technique
and is accepted as a soft ionization method compared to the harsher
conditions of electron impact ionization with the latter leading to
excessive fragmentation of the parent ion.41 The ions formed via soft
photoionization were extracted and ultimately detected by a
microchannel plate detector through an ion lens. Under our
experimental conditions, modeling suggested that the residence time
in the reactor tube was few tens of microseconds.42,43 Photoionization
efficiency (PIE) curves, which report ion counts as a function of
photon energy with a step interval of 0.05 eV at a well-defined mass-
to-charge ratio (m/z), were produced by integrating the signal
recorded at the specific m/z for the species of interest. Due to the
weak signal in these experiments, extended data accumulation times of
up to 15 min per step had to be accounted for, and each step was
repeated three times. No unexpected or unusually high safety hazards
were encountered during the course of this study.
Computational Methods. The additional channels in the C9H7 +

C5H5 reaction, which were not considered in the previous
publication,29 were explored here via doubly hybrid density functional
theory (DFT) B2PLYPD344−46/6-311G(d,p) geometry optimization
of the pertinent minima and transition states. Vibrational frequencies
and zero-point vibrational energy (ZPE) corrections were computed
at the same level of theory, and the optimized stationary structures
were characterized as local minima or transition states on the PES
based on the number of imaginary frequencies. Single-point energies
were then refined within the G3(MP2,CC) model chemistry
scheme.47−49 The B2PLYPD3 and G3(MP2,CC) calculations in the
present study were performed using the Gaussian 1650 and Molpro
202151 quantum chemistry software packages. Adiabatic ionization
energies of benzofulvalene isomers p3 and p4 were computed using
the G3(MP2,CC)//B2PLYPD3/6-311G(d,p) method with ZPE
corrections with the expected accuracy of ±0.05 eV. Ionization
Franck−Condon factors at 0 K needed to generate a theoretical
photoionization efficiency (PIE) curve for p3 were calculated using
B2PLYPD3/6-311G(d,p)-optimized geometries and corresponding
vibrational frequencies of the neutral and cationic species using the
methodology implemented by Barone and co-workers.52 Electronic
excitation energies of the benzofulvalene cation p3+ were estimated
within the time-dependent (TD)-DFT method53 with the ωB97XD
functional54 and the cc-pVTZ basis set.55

Temperature- and pressure-dependent phenomenological rate
constants for the decomposition of C14H11 radicals produced by H
losses from the initial C9H7-C5H5 complexes were computed using
the one-dimensional Rice−Ramsperger−Kassel−Marcus master
equation (RRKM-ME) approach56 employing the MESS software
package57 Details of the calculations were described in the previous
work.29 Here, we used the same MESS input file augmented with the
additional intermediates, transition states, and product p4, which were
included in the new kinetic scheme.
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