Science Advances

Supplementary Materials for

Processing of methane and acetylene ices by galactic cosmic rays and implications to the color diversity of Kuiper Belt objects

Chaojiang Zhang et al.

Corresponding author: Ralf I. Kaiser, ralfk@hawaii.edu

Sci. Adv. **9**, eadg6936 (2023) DOI: 10.1126/sciadv.adg6936

This PDF file includes:

Python code for SIMS Figs. S1 to S6 Tables S1 to S11

Python code used to analysis the secondary ion mass spectra (SIMS)

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as inter
import scipy.optimize as opt
import pandas as pd
m_c13=13.00336 #exact mass of C-13 isotope, amu
m_h=1.00783 #exact mass of H-1 isotope, amu
path='sample_{ind}//Sample {ind}//#path to the data file
ind=1#index of the data file
file='A22249.'#name of the data file
mspec=np.loadtxt(path.format(ind=ind)+file+'txt',skiprows=3).T #load data file
c_off=200 #intensity cut-off
plt.plot(mspec[1],c_off*np.ones(len(mspec[1])),label='Cut-off') #plot cut-off
plt.plot(mspec[1],mspec[2],label='Raw data') #plot raw data
mlist=[] #creating a list of x, y and masses for (C-13)x(H-1)y compounds, x = 1-39,
y = 0 - 2 * x + 3
for i in np.arange(1,500//13+1):
  for j in range(2*i+3):
     mass = m_c 13*i + m_h*j
     if mass<500:
       mlist.append([i,j,mass])
mlist=np.asarray(mlist)
def findpnts(data,x,dx,NoPlot=True): #procedure to select peaks in the dx vicinity of
х
  res=np.argwhere(np.abs(data[1]-x) < dx)
  if not NoPlot:
     plt.plot(data[1,res],data[2,res])
  return res
out=np.array([[],[],[],[]]).T #creating array of processed data
for i in mlist: #populating array of processed data with number of counts within
m/5000 of mslist[i]
  res=findpnts(mspec,i[2],i[2]/5000)
  res1=np.sum(np.where(mspec[2,res]>c_off,mspec[2,res],0))
  if res1>0:
     out=np.vstack((out,np.array([i[0],i[1],i[2],res1]))))
plotdata=np.zeros((2,3*len(out))) #creating array for stick spectrum of processed
data
f=open(path.format(ind=ind)+file+'out','a') #.out file
for i in range(len(out)): #populating stick spectrum array, saving processed data
into .out file
  plotdata[0,3*i]=out[i,2]-1e-6
```

```
plotdata[0,3*i+1]=out[i,2]
  plotdata[0,3*i+2]=out[i,2]+1e-6
  plotdata[1,3*i+1]=out[i,3]
  f.write('C'+str(int(out[i,0]))+'H'+str(int(out[i,1]))+' +str(round(out[i,2],4))+'
'+str(int(out[i,3]))+' n')
f.close()
plt.plot(plotdata[0],-plotdata[1],label='Stick spectrum') #plotting stick spectrum
gatedata=np.zeros((2,4*len(out))) #creating array for mass gates
for i in range(len(out)):
  gatedata[0,4*i]=out[i,2]*(1-1/5000)-1e-6
  gatedata[0,4*i+1]=out[i,2]*(1-1/5000)
  gatedata[1,4*i+1]=out[i,3]/10
  gatedata[0,4*i+2] = out[i,2]*(1+1/5000)
  gatedata[1,4*i+2]=out[i,3]/10
  gatedata[0,4*i+3]=out[i,2]*(1+1/5000)+1e-6
plt.plot(gatedata[0],gatedata[1],label='Gates') #plotting mass gates
```

plt.legend()

Fig. S1 The color slope evolutions of irradiated ¹³C-acetylene ($^{13}C_2H_2$) and ^{13}C -methane ($^{13}CH_4$) during warming-up those ice mixtures up to 300 K.

Fig. S2. Deconvoluted infrared spectra of 13 C-acetylene (13 C₂H₂). (**A**) Pristine ices at 40 K. (**B**) After irradiation at 40 K. (**C**) The residue at 300 K. For clarity, only significant peaks are labeled, detailed assignments can be found in Table S3.

Fig. S3. Deconvoluted infrared spectra of ¹³C-methane (¹³CH₄). (**A**) Pristine ices at 10 K. (**B**) After irradiation at 10 K. (**C**) The residue at 300 K. For clarity, only significant peaks are labeled, detailed assignments can be found in Table S4.

Fig. S4. Deconvoluted infrared spectra of ¹³C-methane (¹³CH₄). (**A**) Pristine ices at 20 K. (**B**) After irradiation at 20 K. (**C**) The residue at 300 K. For clarity, only significant peaks are labeled, detailed assignments can be found in Table S5.

Fig. S5. Positive ion SIMS data from residues of irradiated ${}^{13}C$ -acetylene (${}^{13}C_2H_2$). The data were recorded in the mass to charge from 10 to 120 (left) and mass to charge from 120 to 250 (right) correlated with (a) 0.5 eV amu⁻¹, (b) 4.6 eV amu⁻¹, (c) 8.2 eV amu⁻¹, (d) 46.4 eV amu⁻¹, and (e) 82.1 eV amu⁻¹.

Fig. S6. Negative ions SIMS data from residues of irradiated ¹³C-acetylene (${}^{13}C_{2}H_{2}$). The data were recorded in the mass to charge from 10 to 120 (left) and mass to charge from 120 to 250 (right) correlated with (a) 0.5 eV amu⁻¹, (b) 4.6 eV amu⁻¹, (c) 8.2 eV amu⁻¹, (d) 46.4 eV amu⁻¹, and (e) 82.1 eV amu⁻¹.

Initial kinetic energy of the electrons,	5		
Ice		$^{13}C_{2}H_{2}$	$^{13}CH_4$
Irradiation current, I (nA)		1500 ± 115	1180 ± 70
Total number of electrons		3.37×10^{17}	$2.65 imes 10^{17}$
Average penetration depth, $l (nm)^a$		320 ± 30	330 ± 30
Average kinetic energy of backscatter	red electrons, E_{bs} (keV) ^a	3230 ± 320	3000 ± 300
Fraction of backscattered electrons, f_t	0.33 ± 0.03	0.26 ± 0.03	
Average kinetic energy of transmittee	0	0	
Fraction of transmitted electrons, f_{tran}	0	0	
Irradiated area, $A (cm^2)$		1 ± 0.05	1 ± 0.05
$\mathbf{D}_{acc} \left(\mathbf{a} \mathbf{V} \mathbf{m}_{a} \mathbf{a}_{a} \mathbf{u}_{a}^{-1} \right)$	$^{13}C_{2}H_{2}$	2300	± 320
Dose (ev molecule)	¹³ CH ₄	1400	± 190
Dose (eV amu ⁻¹)	$^{13}C_{2}H_{2}$	82.1 ± 10.0	
	¹³ CH ₄	82.1 ± 10.0	

Table S1. Data applied to calculate the average irradiation dose per molecule.

Note.

^a Parameters obtained from CASINO software v2.4.

Absorption before irradiation (cm ⁻¹)	Absorption after irradiation (cm ⁻¹)	Absorption after TPD (cm ⁻¹)	Assignment	Reference
5101, 4052, 3845			$5v_4 + 3v_5, v_1 + v_5, v_2 + 2v_4 + v_5$	(74, 75)
	3529, 3457, 3374	3293, 3261, 3226	C–H stretch (v_{C-H} , alkynes, –C=C–H)	(74-76)
3317			v_1	(74, 75)
3242, 3216			ν_3	(74, 75)
	3170, 3128	3021, 3000	C–H stretch (v_{C-H} , alkenes, –CH=CH ₂)	(76)
	3070, 3045, 3000	3062	C–H stretch (v_{C-H} , aromatics, =CH–)	(76, 77)
	2952, 2917, 2912	2917, 2913, 2898,	asymmetric C–H stretch (v_{C-H} , acylic alkanes, –CH ₂ –)	(76)
	2859, 2842, 2825	2859, 2842, 2825	symmetric C–H stretch (v_{C-H} , acylic alkanes, –CH ₂ –)	(76)
2648			$v_2 + v_5$	(74, 75)
	2088, 2048		C=C stretch ($v_{C=C}$, monosubstituted alkynes, $-C=CH$)	(75, 76)
1899			v_2	(74, 75)
	1581, 1562, 1550, 1546, 1531, 1521, 1500	1581, 1558, 1537, 1519	C=C stretch ($v_{C=C}$, alkenes or aromatics)	(76, 77)
	1440, 1363, 1334, 1321, 1307, 1290, 1268,	1440, 1360, 1317, 1286, 1268	C=C stretch ($v_{C=C}$, aromatics)	(76, 77)
1381			$v_4 + v_5$	(74, 75)
	1197, 1178, 1170, 1160,			
	1135, 1132, 1103, 1070, 1043, 1022	1058, 1012, 962	C–C stretch (v_{C-C} , alkanes)	(76)
	989, 960, 912, 894, 881, 854, 833	929, 906, 894, 873, 827, 798, 788, 777	Aromatic or alkenes =C–H out-of-plane deformation	(76, 77)
782, 754, 745		, ,	<i>V</i> 5	(74, 75)

Table S2. Infrared absorption features were recorded before the electron irradiation, after the electron irradiation ($82.1 \pm 10 \text{ eV} \text{ amu}^{-1}$), and after the temperature-programmed desorption (TPD) of ¹³C-acetylene ice ($^{13}C_2H_2$) at 10 K.

Absorption before irradiation (cm ⁻¹)	Absorption before irradiation (cm^{-1})Absorption after irradiation (cm^{-1})Absorption after (cm^{-1})		Assignment	Reference
5101, 4474, 4051,			$5n_{1} + 3n_{2} + n_{3} + 2n_{4} + n_{5} + n_{5} + 2n_{4} + n_{5}$	(74, 75)
3845			$5V_4 + 5V_5, V_3 + 2V_4, V_1 + V_5, V_2 + 2V_4 + V_5$	(74, 75)
3399, 3364			$v_2 + 2v_5$	(74, 75)
	3328, 3293, 3268	3291, 3263	C–H stretch (v_{C-H} , alkynes, –C=C–H)	(74-76)
3261			v_1	(74, 75)
3215			<i>V</i> 3	(74, 75)
	3176, 3149, 3133		C–H stretch (v_{C-H} , alkenes, –CH=CH ₂)	(74-76)
	3064, 3028,	3066, 3028	C–H stretch (v_{C-H} , aromatics, =CH–)	(76, 77)
	2998, 2958, 2948, 2912	2995, 2954, 2915	asymmetric C–H stretch (v_{C-H} , acylic alkanes, –CH ₂ –)	(74, 76)
	2859, 2842, 2823	2854, 2828	symmetric C–H stretch (v_{C-H} , acylic alkanes, –CH ₂ –)	(74, 76)
2673			$v_2 + v_5$	(74, 75)
2336			3v5	(74, 75)
	1454, 1436, 1363, 1268	1457, 1436, 1398, 1365, 1334, 1315, 1295, 1265,	C=C stretch ($v_{C=C}$, aromatics)	(76, 77)
1383			$v_4 + v_5$	(74, 75)
	1228, 1203, 1186, 1161, 1135, 1106, 1087, 1074, 1058, 1031	1236, 1186, 1157, 1029, 1014	C–C stretch (v_{C-C} , alkanes)	(74, 76)
	987, 977, 960, 922, 901, 879, 862, 846, 821	987, 962, 935, 921, 910, 897, 887, 873, 848, 821, 794	Aromatic or alkenes =C-H out-of-plane deformation	(74, 76, 77)
788, 758			v_5	(74, 75)

Table S3. Infrared absorption features were recorded before the electron irradiation, after the electron irradiation ($82.1 \pm 10 \text{ eV} \text{ amu}^{-1}$), and after the temperature-programmed desorption (TPD) of ¹³C-acetylene ice ($^{13}C_2H_2$) at 40 K.

Absorption before irradiation (cm ⁻¹)	Absorption after irradiation (cm ⁻¹)	Absorption after TPD (cm ⁻¹)	Assignment	Reference
5968, 5782, 5540, 4518, 4283, 4192, 4098, 3825			$2v_3, v_1 + v_3, v_3 + 2v_4, v_2 + v_3, v_3 + v_4, v_1 + v_4, v_2 + 2v_4, 3v_4$	(78, 80)
	4127 3300 3222		$v_7 + v_{12} (C_2H_6)$ $v_3 + v_4 + v_5 (C_2H_2)$ $v_3 (C_2H_2)$	(74) (78, 80) (78, 80)
		3409, 3263, 3174, 3149,	C–H stretch (v_{C-H} , alkynes, –C=C–H, or alkenes, –CH=CH ₂)	(74-76)
2999	3065, 3025	3065, 3016	C-H stretch (v_{C-H} , aromatics, =CH-) v_3	(76, 77) (78, 80)
	2952, 2921, 2912, 2902	2952, 2919, 2910, 2900	asymmetric C–H stretch (v _{C-H} , acylic alkanes, –CH ₂ –)	(74, 76)
2854 2807	2863, 2840, 2809	2862, 2846, 2834	symmetric C–H stretch (v_{C-H} , acylic alkanes, –CH ₂ –) v_1 $v_2 + v_4$	(74, 76) (78, 80) (78, 80)
2577			$2v_4$	(78, 80)
	1454, 1429, 1363	1484, 1454, 1429, 1363 1224, 1205, 1280	C=C stretch ($v_{C=C}$, aromatics)	(76, 77)
	1230, 1199, 1172, 1145, 1106, 1087, 1020	1334, 1305, 1280, 1267, 1251, 1228, 1193, 1170, 1145, 1108, 1095, 1087, 1058, 1020	C–C stretch (v_{C-C} , alkanes)	(74, 76)
1291			v_4	(78, 80)
	989, 966, 949, 903, 879, 823, 775, 748, 723	989, 966, 950, 910, 880, 868, 850, 835, 821, 811, 809, 796, 781, 759, 750	Aromatic or alkenes =C–H out-of-plane deformation	(76, 77)

Table S4. Infrared absorption features were recorded before the electron irradiation, after the electron irradiation ($82.1 \pm 10 \text{ eV} \text{ amu}^{-1}$), and after the temperature-programmed desorption (TPD) of ¹³C-methane ice (¹³CH₄) at 10 K.

Absorption before irradiation (cm ⁻¹)	Absorption after irradiation (cm ⁻¹)	Absorption after TPD (cm ⁻¹)	Assignment	Reference
5971, 5782, 5543,				
4520, 4286, 4194,			$2v_3$, $v_1 + v_3$, $v_3 + 2v_4$, $v_2 + v_3$, $v_3 + v_4$, $v_1 + v_4$, $v_2 + 2v_4$, $3v_4$	(78, 80)
4100, 3825				
	4123		$v_7 + v_{12} (C_2 H_6)$	(74)
	3731	3731, 3702	$v_{11} + v_{10} (C_2 H_4)$	(78, 80)
	3415, 3361, 3299, 3270,	3407, 3365, 3278,		
	3263, 3222, 3183, 3162,	3274, 3222, 3178,	C–H stretch (v_{C-H} , alkynes, –C=C–H, or alkenes, –CH=CH ₂)	(74-76)
	3143	3151, 3120		
	3068, 3021	3068, 3023	C–H stretch (v_{C-H} , aromatics, =CH–)	(76, 77)
2999			<i>v</i> ₃	(78, 80)
	2950, 2927, 2918, 2911,	2994, 2950, 2925,	asymmetric C-H stretch (vo u acylic alkanes -CH2-)	(74, 76)
	2902	2915, 2906, 2898	asymmetric $C=11$ succen ($V_{C}=H$, acyne arkanes, $-CH_2=$)	(74,70)
	2862, 2844, 2829	2862, 2844, 2829	symmetric C–H stretch (v_{C-H} , acylic alkanes, –CH ₂ –)	(74, 76)
2908			v_1	(78, 80)
2809			$v_2 + v_4$	(78, 80)
2579			$2v_4$	(78, 80)
	1450 1429 1363	1479, 1450, 1429,	$C=C$ stretch (v_{C} a aromatics)	(76, 77)
	1430, 1429, 1303	1402, 1363, 1340	C C success $(V \leq C, a \text{ of nations})$	(70,77)
	1259, 1230, 1203, 1174,	1311, 1286, 1230,		
	1147, 1128, 1110, 1088,	1207, 1155, 1133,	C–C stretch (v_{C-C} , alkanes)	(74, 76)
	1066, 1041,1012	1108, 1083, 1012		
1291			\mathcal{V}_4	(78, 80)
	985, 956, 916, 903, 876,	985, 956, 908, 877,		
	862, 847, 818, 796, 777,	842, 815, 788, 767,	Aromatic or alkenes =C–H out-of-plane deformation	(76, 77)
	740, 719	738, 715, 692		

Table S5. Infrared absorption features were recorded before the electron irradiation, after the electron irradiation ($82.1 \pm 10 \text{ eV} \text{ amu}^{-1}$), and after the temperature-programmed desorption (TPD) of ¹³C-methane ice (¹³CH₄) at 20 K.

Table S6. Rate constants calculated via the solution of the coupled differential equations for the complex reaction of irradiated methane and acetylene ices. Errors of the rate constants were derived between 20 and 30 %.

Reaction	$^{13}C_2H_2$ Ice	10 K	40 K
	k_1	0.60	0.19
$^{13}C_2H_2 \xrightarrow{k_1}_{k_2}$ Aromatics Aromatics $_2 \longrightarrow$ Polymeric aromatics	k_{-1}	0.25	0.205
	k_2	0.055	0.080
	¹³ CH ₄ Ice	10 K	20 K
k_3	k_1	0.0012	0.0010
	k_2	0.15	0.10
$^{13}CH_4 \xrightarrow{k_1} {}^{13}C_2H_2 \xrightarrow{k_2} Aromatics_1 \xrightarrow{k_4} Aromatics_2 \longrightarrow Polymeric aromatics$	k_3	0.13	0.13
k ₅ Polyacetylenes	k_4	0.16	0.10
	k_5	0.0033	0.0015

Note. Units of k are amu eV^{-1} .

	Dose	Detected	Reactants	Theoretical	Pagatanta	Detected
Ice	(eV	hydrogen	molecules	yield hydrogen	consumed (%) a	hydrogen
	amu^{-1})	molecules	remaining	molecules	consumed (%)	efficiency (%) b
10 K	0	0	$7.88 imes 10^{17}$	0	0	0
Irradiation	0.7	1.42×10^{13}	7.01×10^{17}	1.30×10^{17}	11.01	0.01
$^{13}CH_4$	1.4	3.23×10^{13}	6.37×10^{17}	2.27×10^{17}	19.22	0.01
	2.8	6.31×10^{14}	$5.24 imes 10^{17}$	3.95×10^{17}	33.46	0.16
	5.7	2.23×10^{15}	3.56×10^{17}	6.48×10^{17}	54.84	0.34
	11.4	5.22×10^{15}	1.64×10^{17}	9.36×10^{17}	79.21	0.56
	17.1	8.43×10^{15}	$7.55 imes 10^{16}$	$1.07 imes 10^{18}$	90.42	0.79
	22.8	$1.23 imes 10^{16}$	$3.47 imes 10^{16}$	1.13×10^{18}	95.59	1.09
	34.3	$1.90 imes 10^{16}$	7.36×10^{15}	$1.17 imes 10^{18}$	99.07	1.62
	45.7	2.72×10^{16}	1.56×10^{15}	1.18×10^{18}	99.80	2.31
	82.2	$5.04 imes 10^{16}$	1.11×10^{14}	1.18×10^{18}	99.99	4.26
20 K	0	0	7.88×10^{17}	0	0	0
Irradiation	0.7	1.25×10^{13}	$7.16 imes 10^{17}$	1.08×10^{17}	9.10	0.01
$^{13}CH_4$	1.4	$3.68 imes 10^{14}$	6.51×10^{17}	2.05×10^{17}	17.38	0.18
	2.8	$7.06 imes 10^{14}$	$5.38 imes 10^{17}$	3.75×10^{17}	31.72	0.19
	5.7	2.05×10^{15}	3.68×10^{17}	6.31×10^{17}	53.36	0.33
	11.4	4.94×10^{15}	1.71×10^{17}	9.25×10^{17}	78.25	0.53
	17.1	8.16×10^{15}	$7.99 imes 10^{16}$	1.06×10^{18}	89.86	0.77
	22.8	1.21×10^{16}	$3.72 imes 10^{16}$	1.13×10^{18}	95.27	1.07
	34.3	$1.92 imes 10^{16}$	$8.10 imes 10^{15}$	$1.17 imes 10^{18}$	98.97	1.65
	45.7	$2.71 imes 10^{16}$	$1.76 imes 10^{15}$	$1.18 imes 10^{18}$	99.78	2.30
	82.2	$5.11 imes 10^{16}$	$1.35 imes 10^{15}$	$1.18 imes 10^{18}$	99.83	4.33
10 K	0	0	5.81×10^{17}	0	0	0
Irradiation	0.7	4.31×10^{14}	3.64×10^{17}	4.35×10^{16}	37.40	0.99
$^{13}C_{2}H_{2}$	1.4	$1.18 imes 10^{15}$	2.70×10^{17}	6.22×10^{16}	53.54	1.89
	2.8	2.50×10^{15}	$1.86 imes 10^{17}$	$7.89 imes 10^{16}$	67.91	3.16
	5.7	4.49×10^{15}	1.43×10^{17}	8.75×10^{16}	75.31	5.13
	11.4	8.00×10^{15}	1.16×10^{17}	9.31×10^{16}	80.12	8.60
	17.1	$1.16 imes 10^{16}$	9.47×10^{16}	9.73×10^{16}	83.70	11.90
	22.8	$1.56 imes 10^{16}$	$7.77 imes 10^{16}$	1.01×10^{17}	86.62	15.47
	34.3	$2.29 imes 10^{16}$	$5.23 imes 10^{16}$	1.06×10^{17}	91.00	21.66
	45.7	$3.01 imes 10^{16}$	3.52×10^{16}	1.09×10^{17}	93.94	27.59
	82.2	5.40×10^{16}	9.95×10^{15}	1.14×10^{17}	98.29	47.26

Table S7. Quantified hydrogen molecules of irradiated methane and acetylene during the irradiation.

40 K	0	0	5.81×10^{17}	0	0	0
Irradiation	0.7	1.37×10^{13}	5.09×10^{17}	1.43×10^{16}	12.34	0.10
$^{13}C_{2}H_{2}$	1.4	2.71×10^{13}	4.49×10^{17}	2.63×10^{16}	22.64	0.10
	2.8	$7.76 imes 10^{14}$	3.56×10^{17}	$4.50 imes 10^{16}$	38.72	1.72
	5.7	$2.85 imes 10^{15}$	$2.39 imes 10^{17}$	$6.85 imes 10^{16}$	58.94	4.16
	11.4	$5.79 imes 10^{15}$	1.21×10^{17}	9.20×10^{16}	79.15	6.29
	17.1	9.77×10^{15}	$6.53 imes 10^{16}$	1.03×10^{17}	88.77	9.47
	22.8	$1.36 imes 10^{16}$	$3.56 imes 10^{16}$	$1.09 imes 10^{17}$	93.87	12.48
	34.3	$2.10 imes 10^{16}$	$1.07 imes 10^{15}$	$1.14 imes 10^{17}$	98.17	18.44
	45.7	$2.83 imes 10^{16}$	3.19×10^{15}	1.16×10^{17}	99.45	24.48
	82.2	$5.32 imes 10^{16}$	2.82×10^{15}	1.16×10^{17}	99.51	46.05

Note: ^a The number of reactants at 0 eV amu⁻¹ minus the number of reactants in the corresponding dose divided by the number of reactants at 0 eV amu⁻¹ and then multiplied by 100. ^b The number of detected hydrogen molecules divided by the hydrogen produced from the decay of reactants in equation 3-5 and then multiplied by 100.

Table S8. Identified aromatic compounds detected from the room temperature residues of irradiated 13 C-acetylene (13 C₂H₂) ices by twodimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOF-MS) at a dose of 8.2 eV amu⁻¹. At lower doses, only indene, naphthalene, and biphenyl were identified.

		Mologular			D. D.			Quantities ^c ($\times 10^{-12}$ mol)			
	Aromatic Compound	formula	RI^a	RI^b	[min:sec: sec]	m/z	0.1 eV	0.5 eV	0.8 eV	4.6 eV	8.2 eV
					[amu-1	amu-1	amu-1	amu-1	amu-1
1	2-Methylstyrene	$^{13}C_9H_{10}$	156	-	10:40; 1.88	127					23.7^{d}
2	4-Methylstyrene	$^{13}C_9H_{10}$	159	-	10:45; 1.86	127					23.7
3	α -Methylstyrene	$^{13}C_9H_{10}$	151	-	10:20; 1.84	127					6.14
4	β -Methylstyrene	$^{13}C_9H_{10}$	166	-	11:35; 1.95	127					63.9
5	Indane	$^{13}C_9H_{10}$	169	-	11:55; 2.02	127					7.48
6	1 <i>H</i> -Indene	$^{13}C_{9}H_{8}$	172	-	12:10; 2.17	125	0.32		0.40	1.12	25.6
7	1-Methylindene	$^{13}C_{10}H_{10}$	192	-	15:25; 2.23	140					7.21
8	2-Methylindene	${}^{13}C_{10}H_{10}$	185	-	15:15; 2.21	140					11.5
9	3-Methylindene	$^{13}C_{10}H_{10}$	184	-	15:05; 2.36	140					3.57
10	Methylindane	$^{13}C_{10}H_{12}$	-	-	14:15; 1.99	142					7.18
11	Naphthalene	$^{13}C_{10}H_8$	200	200	16:15; 2.51	138	0.43	0.29	0.86	0.51	46.8
12	1-Methylnaphthalene	${}^{13}C_{11}H_{10}$	225	224	19:50; 2.58	153					5.03
13	2-Methylnaphthalene	$^{13}C_{11}H_{10}$	220	221	19:20; 2.47	153					6.53
14	1,2,3,4-tetrahydro-naphthalene	$^{13}C_{10}H_{12}$	195	-	15:40; 2.33	142					4.01
15	9H-Fluorene	$^{13}C_{13}H_{10}$	271	270	26:40; 2.87	179					1.62
16	1,2-Dimethylnapthalene	$^{13}C_{12}H_{12}$	247	250	23:35; 2.63	168					0.42
17	1,4-Dimethylnapthalene	$^{13}C_{12}H_{12}$	243	247	23:10; 2.57	168					0.30
18	1-Ethylnaphthalene	$^{13}C_{12}H_{12}$	240	240	22:05; 2.53	168					22 0 e
19	2-Ethylnaphthalene	$^{13}C_{12}H_{12}$	239	239	22:00; 2.53	168					23.9
20	Azulene	$^{13}C_{10}H_8$	224	223	19:40; 2.90	138					3.69
21	Biphenyl	$^{13}C_{12}H_{10}$	237	236	21:35; 2.56	166	0.24		1.02		53.1
22	2-Methylbiphenyl	$^{13}C_{13}H_{12}$	240	240	22:10; 2.42	181					0.50
23	3-Methylbiphenyl	$^{13}C_{13}H_{12}$	254	254	24:15; 2.52	181					1.16
24	4-Methylbiphenyl	$^{13}C_{13}H_{12}$	257	259	25:00; 2.81	181					0.66
25	Diphenylmethane	$^{13}C_{13}H_{12}$	242	246	23:00; 2.55	181					0.33
26	Phenalene ^c	$^{13}C_{13}H_{10}$	268	269	26:40; 2.47	179					$q.l.^{f}$
27	Phenanthrene	$^{13}C_{14}H_{10}$	300	300	31:00; 3.26	192					1.14
28	Acenaphthylene	$^{13}C_{12}H_8$	247	249	23:25; 2.92	164					0.24
29	Acenaphthene	$^{13}C_{12}H_{10}$	255	258	24:45; 3.15	166					0.48

^{*a*}Lee retention index, NIST Chemistry WebBook, *National Institute of Standards and Technology*; ^{*b*}Lee retention index, this study. ^{*c*} Absolute quantities based on external calibration curves. ^{*d*} Sum of 2-, 4- and potentially 3-methylstyrene. ^{*e*} Sum of 1- and 2-ethylnaphthalene. ^{*f*} Quantification limit.

Formula	m/z	Representative structures (all carbon atoms are ¹³ C)
¹³ CH ₃	16.0268	$CH_3^{oldsymbol{\Theta}}$
$^{13}C_{2}H_{3}$	29.0302	н₂с — сн [⊕]
$^{13}C_{2}H_{5}$	31.0459	H_3C — $CH_2^{oldsymbol{\Theta}}$
${}^{13}C_{3}H_{3}$	44.0492	$HC = C - C H_2^{\Theta}$
$^{13}C_{3}H_{5}$	44.0492	H₂C===CH===CH₃⊕
$^{13}C_4H_3$	55.0369	нс <u></u> с—сн—сн [⊕]
$^{13}C_{4}H_{5}$	57.0526	н₂сснсн⊕
$^{13}C_{5}H_{5}$	70.056	
$^{13}C_{6}H_{5}$	83.0593	
¹³ C ₇ H ₇	98.0783	CH ₂
$^{13}C_{8}H_{7}$	111.0817	HC HC
$^{13}C_{9}H_{7}$	124.085	
$^{13}C_{10}H_8$	138.0962	
$^{13}C_{12}H_8$	164.103	
¹³ C ₁₃ H ₉	178.1142	
¹³ C ₁₅ H ₉	204.1209	

Table S9. Prominent positive ion SIMS data from residues of irradiated ¹³C-acetylene.

Formula	m/z	Representative structures (all carbon atoms are ¹³ C)
${}^{13}C_{2}H$	27.0146	нс≡с:⊖
${}^{13}C_{3}H$	40.0179	: сс́н [⊖]
${}^{13}C_4H$	53.0213	Hc≡=c−−c≡=c•⊖
$^{13}C_{5}H_{2}$	67.0325	
${}^{13}C_{6}H$	79.028	Hc≡c—c≡c—c≡c;⊖
¹³ C ₇ H ₂	93.0392	CH CH CH
13C U	105 0247	
¹⁵ C ₈ H	105.0347	
${}^{13}C_{10}H$	131.0414	нс <u></u> сс <u></u> сс <u></u> сс <u></u> с_с с
$^{13}C_{11}H$	144.0448	
$^{13}C_{12}H$	157.0482	нс <u></u> с—с <u></u> с_с <u></u> с_с <u></u> с_с <u></u> с_с <u></u> с_с <u></u> с
${}^{13}C_{13}H$	170.0728	с—с_с_с_с_с_с_с_с_с_с_с_с_с_с_с
${}^{13}C_{14}H$	183.0307	нс <u></u> с—с <u></u> с_с <u></u> с_с <u></u> с_с <u></u> с_с <u></u> с_с <u></u> с_с <u></u> с

Table S10. Prominent negative ion SIMS data from residues of irradiated ¹³C-acetylene.

Nomo	B - V	V - R	Tommonotumo /V	Distance to
Name	color	color	Temperature/K	Sun/AU
275809-2001QY297	0.947	0.479		43.697
469362-2001KB77	0.89	0.457		39.755
136472-Makemake	0.84	0.48	40 K	45.43
15788-1993SB	0.802	0.475		39.294
59358-1999CL158	0.8	0.39		32.894
181855-1998WT31	0.774	0.453		46.264
1998WV24	0.77	0.502		40.656
24952-1997QJ4	0.763	0.431		39.252
86047-1999OY3	0.726	0.345		43.708
2002XV93	0.72	0.375		39.416
120216-2004EW95	0.693	0.375	35 K	39.78
307261-2002MS4	0.69	0.38		41.73
55636-2002TX300	0.679	0.359	<41 K	43.12
19308-1996TO66	0.671	0.389		43.16
90482-Orcus	0.67	0.376	< 44 K	39.174
120347-Salacia	0.664	0.403		44.8
416400-2003UZ117	0.663	0.354		44.05
120178-2003OP32	0.662	0.375	~42 K	43.52
24835-1995SM55	0.652	0.357		41.628

Table S11. The temperature, composition, and distance to Sun of Kuiper belt object whose color

 can match irradiated methane and acetylene ices.