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ABSTRACT: Molecular beam experiments together with electronic
structure calculations provide the first evidence of a complex network
of elementary gas-phase reactions culminating in the bottom-up
preparation of the 24π aromatic coronene (C24H12) molecule�a
representative peri-fused polycyclic aromatic hydrocarbon (PAH)
central to the complex chemistry of combustion systems and
circumstellar envelopes of carbon stars. The gas-phase synthesis of
coronene proceeds via aryl radical-mediated ring annulations through
benzo[e]pyrene (C20H12) and benzo[ghi]perylene (C22H12) involving
armchair-, zigzag-, and arm-zig-edged aromatic intermediates, high-
lighting the chemical diversity of molecular mass growth processes to
polycyclic aromatic hydrocarbons. The isomer-selective identification
of five- to six-ringed aromatics culminating with the detection of
coronene is accomplished through photoionization and is based upon photoionization efficiency curves along with photoion mass-
selected threshold photoelectron spectra, providing a versatile concept of molecular mass growth processes via aromatic and
resonantly stabilized free radical intermediates to two-dimensional carbonaceous nanostructures.

1. INTRODUCTION
Since the very first isolation in 1932 by Scholl and Meyer,1

coronene (C24H12)�a D6h symmetric peri-fused polycyclic
aromatic hydrocarbon (PAH) consisting of a central benzene
moiety surrounded by six benzene rings�has garnered
considerable attention in the realm of two- and three-
dimensional carbonaceous nanomaterials. As a planar 24π
aromatic system constructed entirely of hexagonal rings,
coronene has been implicated in bottom-up synthetic routes2

to two-dimensional nanostructures such as nanographenes,3−6

circumarenes,7 armchair- and zigzag-edge graphene nanorib-
bons,2,4,8 and graphene quantum dots (Figure 1).9 These
unique two-dimensional structures hold critical applications in
molecular electronics,10 spintronics,11 and optoelectronics.12

While five-membered rings embedded in peri-fused aromatics
such as in corannulene (C20H10) typically bend the carbon
skeleton out-of-plane, molecules like coronene (C24H12) with
only six-membered rings can still endure curvature13 when
molded into three-dimensional carbonaceous nanostructures
like nanowires,14 chiral15 and helical9,16 nanographenes, single-
walled17 and end-capped18 nanotubes, and fullertubes
(C90,

19,20 C120
21) (Figure 1). Such three-dimensional struc-

tures have vital applications spanning molecular electronics22

to medicinal chemistry.23,24

Since coronene (C24H12) maps onto the basal plane of
graphite and graphene nanostructures, complex PAHs are also

of fundamental interest to astrochemistry and to the
combustion science community as molecular building blocks
to carbonaceous nanoparticles referred to as interstellar grains
(astrochemistry)25 and soot particles (combustion),26 respec-
tively. In deep space, PAHs have been suspected to account for
up to 30% of the cosmic carbon budget and are implicated as
carriers of diffuse interstellar bands (DIBs)27 and unidentified
infrared (UIR) bands.28 Sophisticated analyses of carbona-
ceous chondrites such as Allende29 and Murchison30 revealed
the presence of PAHs, including coronene (C24H12),
presumably formed in circumstellar envelopes of carbon-rich
asymptotic giant branch (AGB) stars along with planetary
nebulae as their descendants.31 The formation mechanisms in
these high-temperature circumstellar environments such as the
hydrogen abstraction−acetylene addition (HACA) mecha-
nism32,33 are assumed to mirror those in hydrocarbon-rich
flames, where coronene has been observed in flames of small
hydrocarbons (methane, ethylene) and of gasoline surrogates
(n-heptane, iso-octane, toluene).34−42 In sooting hydrocarbon
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flames, coronene (C24H12) has been dubbed as a critical
precursor in soot nucleation processes�a kinetic bottleneck in
the formation of carbonaceous nanostructures.43−48

Therefore, an intimate knowledge of the underlying
formation mechanisms of coronene in high-temperature
terrestrial and circumstellar environments is crucial to our
understanding of the molecular mass growth processes to
PAHs and carbonaceous nanostructures. High-temperature
kinetic flame models are exploited to explore the mechanisms
involved in PAH formation not only in combustion
processes,49 but these reaction networks have been also
adapted by the astrochemistry community to derive potential
pathways to PAHs through circumstellar reaction networks.50

These models incorporate gas-phase reactions forming PAHs
up to coronene (C24H12) followed by soot nucleation and
aggregation via PAH dimerization.43 While traditional PAH
growth processes have focused on the HACA mechanism,32,33

more recent models have incorporated resonance-stabilized
free radicals (RSFRs) as well as the hydrogen abstraction−

vinylacetylene addition (HAVA) and phenyl addition−
dehydrocyclization (PAC) pathways.37−41,47,51−65 However,
even these refinements were not able to replicate the observed
fractional abundances of coronene (C24H12) in, for example,
ethylene flames, with modeled coronene abundances falling
short by up to an order of magnitude compared to observed
data.52,56 Therefore, the inability to replicate the fractional
abundances of coronene (C24H12) in combustion flames
implies that critical reaction pathways to coronene (C24H12)
are not properly incorporated in the models. Therefore, an
advanced experimental and computational protocol is required
to investigate elementary gas-phase reactions yielding coro-
nene (C24H12) at elevated temperatures.
Herein, we report on a sophisticated combined molecular

beam and computational exploration of the first directed gas-
phase synthesis of the 24π aromatic coronene (C24H12, p9)
molecule via benzo[ghi]perylene (C22H12, p6) and benzo[e]-
pyrene (C20H12, p1) under high-temperature conditions of up
to 1600 K in a chemical microreactor mimicking combustion

Figure 1. Coronene is emphasized as a molecular building block of 2D and 3D nanostructures such as zigzag nanoribbons (1), nanowires (2), and
fullertubes (3). Atoms are color-coded as follows: carbon (gray), carbon in the coronene moiety (black), and hydrogen (white).

Figure 2. Schematic representation of reaction pathways leading to benzo[e]pyrene (C20H12, p1) from 4-bromopyrene (C16H9Br), 1-
bromotriphenylene (C18H11Br), and phenanthrene (C14H10) via three key molecular mass growth processes: hydrogen abstraction−vinylacetylene
addition (HAVA) (blue), hydrogen abstraction−C2H2 addition (HACA) (red), and phenyl addition−dehydrocyclization (PAC) (orange),
respectively. The schematic continues with the formation of coronene (C24H12, p9) from benzo[e]pyrene through two successive HACA
sequences.
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flames and carbon-rich circumstellar envelopes (Figure 2;
Supporting Information). Exploiting an isomer-selective in situ
product detection coupled with fragment-free photoionization
along with photoionization efficiency (PIE) curves and
photoion mass-selected threshold photoelectron (ms-TPE)
spectra, distinct molecular mass growth mechanisms (HACA,
HAVA, PAC) to benzo[e] pyrene (C20H12, p1) were unraveled
in the gas phase; these proceed via carbon−carbon bond
coupling and ring annulation of 1-triphenylenyl (C18H11

•), 4-
pyrenyl (C16H9

•), and phenanthrene (C14H10) by acetylene
(C2H2), vinylacetylene (C4H4), and phenyl (C6H5

•), respec-
tively (Figure 2; reactions 1−3) involving aromatic (AR) and
RSFRs. We further provide evidence that two successive
HACA steps convert benzo[e]pyrene (C20H12, p1) to
benzo[ghi]perylene (C22H12, p6) and eventually to coronene
(C24H12, p9) (Figure 2; reactions 4 and 5). The syntheses of
bromo precursors for 1-triphenylenyl (C18H11

•) and 7-
benzo[ghi]perylenyl (C22H11

•) radicals are described in the
Supporting Information. These findings afford the very first
evidence on a facile, isomer-selective high-temperature route to
extended aromatic systems from the bottom-up driving
molecular mass growth processes of aromatics�coronene
(C24H12, p9)�which act as precursors to soot and interstellar
nanoparticles, thus fundamentally changing our conception of
the complex carbon chemistry in our galaxy.

2. RESULTS
2.1. Mass Spectra. Five reactions were carried out in situ

within the chemical microreactor (Table S1). The reactions of
1-triphenylenyl (C18H11

•) with acetylene (C2H2) (1), 4-
pyrenyl (C16H9

•) with vinylacetylene (C4H4) (2), and
phenanthrene (C14H10) with phenyl (C6H5

•) (3) represent
three avenues to explore the gas-phase preparation of
benzo[e]pyrene (C20H12, p1) via C18−C2, C16−C4, and
C14−C6 carbon−carbon couplings. The elementary reactions
of the 1-benzo[e]pyrenyl radical (C20H11

•) with acetylene
(C2H2) (4) and the 7-benzo[ghi]perylenyl radical (C22H11

•)
with acetylene (C2H2) (5) prepare benzo[ghi]perylene
(C22H12, p6) and ultimately coronene (C24H12, p9),
respectively.

[ ] + +•C H C H C H H18 11 2 2 20 12 (1)

[ ] + +•C H C H C H H16 9 4 4 20 12 (2)

+ [ ] + +•C H C H C H H H14 10 6 5 20 12 2 (3)

[ ] + +•C H C H C H H20 11 2 2 22 12 (4)

[ ] + +•C H C H C H H22 11 2 2 24 12 (5)

Representative mass spectra of reactions 1−5 collected at a
photon energy of 9.00 eV at reactor temperatures between

Figure 3. Comparison of photoionization mass spectra taken at a photon energy of 9.00 eV for the (a) acetylene (C2H2)−1-bromotriphenylene
(C18H11Br), (b) vinylacetylene (C4H4)−4-bromopyrene (C16H5Br), (c) nitrosobenzene (C6H5NO)−phenanthrene (C14H10), and (d) acetylene
(C2H2)−7-bromobenzo[ghi]perylene (C22H2) systems at pyrolysis temperatures of 1300 ± 100, 1400 ± 100, 1300 ± 100, and 1500 ± 100 K,
respectively; e−h were taken for the same systems with pyrolysis off. The mass peaks of the newly formed C20H12 (m/z = 252), C22H12 (m/z =
276), and C24H12 (m/z = 300) species are highlighted in red.
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1300 and 1500 K are compiled in Figure 3a−d. A comparison
of these data with reference spectra collected at 300 K without
pyrolysis (e−h) provides clear evidence of the synthesis of
molecules with the molecular formula C20H12 (252 amu) as
detected via the molecular parent ion at m/z = 252 in the 1-
triphenylenyl−acetylene, 4-pyrenyl−vinylacetylene, and phe-
nyl−phenanthrene reactions 1−3 (Figure 3a−c). Subsequent
molecular mass growth via HACA leads to a signal at m/z =
276 (C22H12

+) (reaction 4) with the benzo[e]pyrenyl radical
(C20H11, 251 amu) formed in situ via hydrogen abstraction
from C20H12 (252 amu) (Figure 3a); this results in a net mass

gain of 24 amu. It is important to highlight that the signals at
m/z = 252 (C20H12

+) and 276 (C22H12
+) are absent in the

control experiments (Figure 3e−g). Finally, a signal at m/z =
300 (C24H12

+) was detected in the 7-benzo[ghi]perylenyl−
acetylene system (reaction 5), thus showcasing the ultimate
formation of C24H12 isomer(s). Prominent ion counts are also
detectable at mass-to-charge ratios (m/z) of 306 (C18H11

79Br+)
and 308 (C18H11

81Br+) (reaction 1), 280 (C16H9
79Br+) and

282 (C16H9
81Br+) (2), 178 (C14H10

+) and 179 (13CC13H10
+)

(3), and 354 (C22H11
79Br+) and 356 (C22H11

81Br+) (5). These
ions are present in both the pyrolysis on and pyrolysis of f mass

Figure 4. Photoionization efficiency (PIE) curves (a, b, c) and mass-selected threshold photoelectron (ms-TPE) spectra (d, e, and f) relevant to the
formation of benzo[e]pyrene (C20H12) at m/z = 252. Black: acetylene (C2H2)−1-bromotriphenylene (C18H11Br) experimental curves; blue:
benzo[e]pyrene reference curves; green: calculated 1-ethynyltriphenylene (C20H12) curves; red: calculated Franck−Condon factors (most intense
transitions denoted with numbers); yellow: vinylacetylene (C4H4)−4-bromopyrene (C16H9Br) experimental curves; brown: calculated trans-4-(1-
buten-3-yne)pyrene (C20H12) curves; violet: calculated cis-4-(1-buten-3-yne)pyrene (C20H12) curves; orange: nitrosobenzene (C6H5NO)−
phenanthrene (C14H10) experimental curves; magenta: calculated benzo[b]fluoranthene (C20H12) curves; cyan: total fit for each reaction by
summing the individual curves in each frame. The overall error bars (gray- and red-shaded areas) consist of two parts: 1σ error of the PIE curve
averaged over the individual scans and ±10% based on the accuracy of the photodiode.
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spectra; therefore, they originate from the 1-bromotripheny-
lene (C18H11Br), 4-bromopyrene (C16H9Br), phenanthrene
(C14H10), and 7-bromobenzo[ghi]perylene (C22H11Br) reac-
tants, respectively. An additional signal that is only observed
with pyrolysis on is detailed in the Supporting Information. To
summarize, the mass spectra alone afford persuasive evidence
of molecular mass growth processes leading to the formation of
isomer(s) of C20H12 (1−3), C22H12 (4), and C24H12 (5).

2.2. Photoionization Efficiency Curves and Mass-
Selected Threshold Photoelectron Spectra. It is now our
objective to ascertain the structural isomer(s) of the C20H12,
C22H12, and C24H12 isomers formed from reactions 1−5. To
accomplish this goal, PIE curves and ms-TPE spectra are
extracted and analyzed. PIE curves depict the ion counts versus
the photon energy at a specific mass-to-charge ratio (m/z),
whereas ms-TPE spectra select only photoions at the desired
m/z in coincidence with the threshold photoelectrons having
kinetic energy less than 10 meV. These data are collected
between 7.00 and 8.00 eV (3), 7.00 and 8.50 eV (1, 2, 4), and
7.00 and 9.00 eV (5). The experimentally recorded PIE curves
and ms-TPE spectra are fit with a linear combination of known
calibration curves of distinct structural isomers to identify
which isomer(s) is(are) synthesized. Based on the reactant
combinations and possible reaction pathways, there are a
limited number of C20H12, C22H12, and C24H12 isomers that
can be formed as products in each system. This pool is further
narrowed by analyzing the ionization potentials and PIE/ms-
TPE spectra of each isomer, and only those that match the
experimental data are verified to form. The exploitation of PIE
curves and ms-TPE spectra in tandem enables isomer-selective
identification of hydrocarbon molecules (Supporting Informa-
tion, Figures S7 and S8).66−74

Reaction 1. First, data were extracted at m/z = 252
(C20H12

+) for reactions 1−3 (Figure 4). The experimental PIE
curve exhibits an ionization onset of 7.40 ± 0.05 eV, which is
matched very well by the benzo[e]pyrene (p1) reference curve
depicting an onset of 7.40 ± 0.05 eV (Figure 4a). However,
above 7.8 eV, the benzo[e]pyrene (p1) spectrum cannot
entirely account for the experimental signal intensity; there-
fore, a calculated PIE for 1-ethynyltriphenylene (p2) was
incorporated to fit the data at these higher photon energies.
The linear combination of benzo[e]pyrene (p1) and 1-
ethynyltriphenylene (p2) offers a good match for the
experimental curve, with ion counts at 8.50 eV at fractions
of 84 ± 8% and 16 ± 3%, respectively. It is important to note
that the actual branching ratios of benzo[e]pyrene (p1) versus
1-ethynyltriphenylene (p2) require the knowledge of their
absolute photoionization cross sections, which are unknown;
further, they cannot be provided computationally with
sufficient accuracy.75 Next, the PIE findings are compared
with those of ms-TPES (Figure 4d). The experimental
spectrum reveals a sharp fundamental (000) transition at 7.40
± 0.05 eV followed by a broader peak centered at 7.60 ± 0.05
eV, a small peak at 7.80 ± 0.05 eV, and yet another broad peak
centered at 8.00 ± 0.05 eV. The benzo[e]pyrene (p1)
reference spectrum matches these positions quite well; the
only deficiency lies at 7.85−7.90 eV, which shows a strong dip
compared to the experimental spectrum. However, this is
remedied by incorporating the calculated 1-ethynyltripheny-
lene (p2) spectrum, which exhibits several transitions in this
energy range. Overall, the reaction 1 PIE findings are mirrored
in the ms-TPES data featuring an excellent overlap between
the experimental spectrum and the fit of two contributions:

major benzo[e]pyrene (p1) and minor 1-ethynyltriphenylene
(p2).

Reaction 2. The PIE for reaction 2 reveals an ionization
onset of 7.20 ± 0.05 eV (Figure 4b), which may indicate that
other isomers, aside from benzo[e]pyrene (p1), are present in
the molecular beam as well. This low-energy section of the PIE
can be fit using calculated PIE curves of cis- and trans-4-(1-
buten-3-yne)pyrene (p4 and p3); however, a signal above 7.40
eV cannot be accounted for by these two isomers alone. An
incorporation of the benzo[e]pyrene (p1) reference curve fits
well with the experimental PIE at photon energies above 7.40
eV. Essentially, a linear combination of benzo[e]pyrene (p1)
with the cis- and trans-4-(1-buten-3-yne)pyrene (p4 and p3)
isomers with relative ion counts at 8.50 eV of 65 ± 4%, 29 ±
3%, and 6 ± 5%, respectively, produces an excellent match to
the experimental curve. The ms-TPES features a reduced
signal-to-noise ratio compared with that observed for reaction
1; nevertheless, the ms-TPES exhibits identical peaks at 7.40 ±
0.05, 7.60 ± 0.05, 7.80 ± 0.05, and 8.00 ± 0.05 eV in addition
to a small broad feature at 7.30 ± 0.05 eV (Figure 4e). Using
cis- and trans-4-(1-buten-3-yne)pyrene (p4 and p3) to fit the
minor peak at 7.30 eV and benzo[e]pyrene (p1) to replicate
the data above 7.40 eV provides a reasonably good match to
the experimental spectrum.

Reaction 3. The experimental PIE for reaction 3 displays an
ionization onset of 7.35 ± 0.05 eV, which lies within the error
of the benzo[e]pyrene (p1) reference onset of 7.40 ± 0.05 eV
(Figure 4c). The full experimental PIE curve can be fit by
exploiting only the benzo[e]pyrene (p1) PIE; however, this is
not the case for the ms-TPES (Figure 4f). Here, a large peak
spanning from 7.75 ± 0.05 to 7.85 ± 0.05 eV cannot be
accounted for by the benzo[e]pyrene (p1) reference spectrum;
therefore, the calculated ms-TPES of benzo[b]fluoranthene
(p5), which features a strong peak between 7.75 ± 0.05 and
7.85 ± 0.05 eV, was added. A linear combination of the
benzo[e]pyrene (p1) and benzo[b]fluoranthene (p5) ms-TPE
spectra offers a reasonable fit of the experimental spectrum.
Incorporating both isomers in the fit for the experimental PIE
also provides a good match, too, with ion counts for
benzo[e]pyrene (p1) and benzo[b]fluoranthene (p5) at 8.00
eV of 87 ± 2% and 13 ± 4%, respectively. The result that the
experimental PIE can be fit with both isomers or with only
benzo[e]pyrene (p1), while the ms-TPES can only be fit with
both isomers, highlights the merits of the PEPICO technique
for sensitive isomer-specific determination of complex
molecules. Additionally, Franck−Condon factors (FC) were
calculated for the benzo[e]pyrene (p1) vibronic transitions
from the neutral ground electronic state to the cation ground
electronic state, which are shown as red vertical lines in Figure
4d−f. The origin band at 7.42 ± 0.05 eV matches the most
intense peak for all three reactions, while the next three most
intense lines at 7.46 ± 0.05, 7.58 ± 0.05, and 7.62 ± 0.05 eV
can be assigned to the 901/1001, 5601/5801/6401, and 7801
transitions, respectively, which coincide with distinct peaks
or shoulders of the experimental spectra (Figure 4d−f) and
represent the vibrational fingerprint benzo[e]pyrene. All
together, we have provided evidence for the formation of
benzo[e]pyrene (C20H12, p1) from reactions 1−3.

Reaction 4. The data were analyzed for m/z = 276
(C22H12

+) for reaction 4 (Figure 5). The experimental PIE
curve can be fit solely with a benzo[ghi]perylene (p6)
reference PIE, both of which have an ionization onset of
7.15 ± 0.05 eV. Signal intensity was very weak at m/z = 276,

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c03816
J. Am. Chem. Soc. 2023, 145, 15443−15455

15447

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c03816/suppl_file/ja3c03816_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c03816/suppl_file/ja3c03816_si_001.pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c03816?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and thus we were unable to obtain a reliable ms-TPES;
however, the excellent overlap between the experimental and
reference PIEs alone provides evidence on the formation of
benzo[ghi]perylene (p6) from reaction 4.
Reaction 5. Finally, data were extracted at m/z = 300

(C24H12
+) for reaction 5 (Figure 6). Inspecting first the PIE

curve, only a single isomer�coronene (p9)�is necessary to
provide a reasonable fit of the experimental data (Figure 6a).
The experimental ionization onset occurs at 7.30 ± 0.05 eV,
which shows an excellent agreement within error to the

coronene (p9) reference onset at 7.310 ± 0.005 eV from
Brećhignac et al.68 The ms-TPE spectrum features a strong
peak at 7.30 ± 0.05 eV, which is matched by the coronene
(p9) reference spectrum (Figure 6b) and corresponds to the
origin band transition (000). The reference also displays a peak
at 7.36 eV, which is reflected in the experimental spectrum as a
shoulder and can be attributed to the in-plane ring
deformation (1801), followed by three peaks in close proximity,
all within 7.40 to 7.60 eV, aligning well with the experimental
peaks. The first lies at 7.44 eV and is likely due to the overtone
1802; however, the second and third peaks at 7.48 and 7.54 eV
are more difficult to assign. There are multiple transitions very
near each other around 7.48 eV,68 with the most intense being
the C−C stretching mode 401, and since our scan step size was
0.02 eV, each transition in this region cannot be individually
resolved; thus the peak at 7.48 eV potentially arises from the
1001, 901, and/or 401 transitions. Likewise, the peak at 7.54 eV can
be tentatively assigned to the combination band (1801401) of the
two most intense individual transitions. The next definitive
peak in the experimental ms-TPES lies around 8.60 ± 0.05 eV,
also matching the coronene (p9) reference. This peak belongs
to the origin bands of the coronene cation electronic excited
states 12B2g and 12B3g.

76 It is important to note that ion counts
from 7.10 to 7.25 likely originate from hot and sequence
bands, which results in a spectrum containing spectral
broadening from low collisional cooling and larger scan steps
as compared to the reference spectrum.77 Overall, both the PIE
curves and ms-TPE spectra evidence the formation of
coronene (C24H12, p9) from the reaction of acetylene
(C2H2) with a 7-benzo[ghi]perylenyl radical (C22H11

•).

3. DISCUSSION
In the case of complex reactions involving polyatomic
reactants, it is essential to combine the experimental results

Figure 5. Photoionization efficiency (PIE) curves at m/z = 276
(C22H12). Black: experimentally derived PIE curve; blue: benzo[ghi]-
perylene reference PIE curve. The overall error bars (gray area)
consist of two parts: 1σ error of the PIE curve averaged over the
individual scans and ±10% based on the accuracy of the photodiode.

Figure 6. Photoionization efficiency (PIE) curves (a) and mass-selected threshold photoelectron (ms-TPE) spectra (b) relevant to the formation of
coronene (C24H12) at m/z = 300. Black: acetylene (C2H2)−7-bromobenzo[ghi]perylene (C22H11Br) experimental curves; blue: coronene reference
curves from Brećhignac et al;68 red: vibronic transitions from the coronene neutral electronic ground state to the cation electronic ground state;
green: vibronic transition from the coronene neutral electronic ground state to the cation first electronic excited state. The overall error bars (gray-
shaded areas) consist of two parts: 1σ error of the PIE curve averaged over the individual scans and ±10% based on the accuracy of the photodiode.
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with electronic structure calculations of potential energy
surfaces (PES) leading to benzo[e]pyrene (p1), benzo[ghi]-
perylene (p6), and coronene (p9) via reactions 1−5. First, the
PESs for reactions 1−3 preparing the gas-phase benzo[e]-
pyrene are depicted in Figure 7. Reaction 1 (Figure 7a) is
initiated by the addition of acetylene (C2H2) with one of the
carbon atoms to the radical center of the 1-triphenylenyl

(C18H11
•) radical, forming intermediate i1 via an entrance

barrier of 19 kJ mol−1. Intermediate i1 can simply lose a
hydrogen atom to form the side chain C20H12 product isomer
1-ethynyltriphenylene (p2) through a transition state (TS)
positioned 2 kJ mol−1 above the initial reactants; conversely, i1
may undergo a series of isomerization steps involving, for
example, ring closure, eventually leading to benzo[e]pyrene

Figure 7. Potential energy diagrams leading to C20H12 isomers from the acetylene (C2H2)−1-triphenylenyl (C18H11
•) (a), vinylacetylene (C4H4)−

4-pyrenyl (C16H9
•) (b), and phenyl (C6H5

•)−phenanthrene (C14H10) (c) reactions calculated at the G3(MP2,CC)//B3LYP/6-311G(d,p) level.
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(p1). This process involves a hydrogen atom migration from
the C12 carbon of i1 to the terminal carbon of the side chain
(i1 → i2), a six-membered ring closure via a barrier of only 5
kJ mol−1 (i2 → i3), and an atomic hydrogen loss from the CH2
group accompanied by aromatization to benzo[e]pyrene (i3 →
p1). Additional pathways include an immediate six-membered-
ring closure from i1 to i4 and subsequent hydrogen atom loss
to p1, as well as hydrogen atom migration connecting i3 and
i4. Overall, the acetylene (C2H2)−1-triphenylenyl (C18H11

•)
reaction results in the formation of benzo[e]pyrene (p1) in an
exoergic reaction featuring an entrance barrier via HACA,
limiting this process to high-temperature environments such as
combustion flames and circumstellar envelopes.

Reaction 2 (Figure 7b) forms an initial van der Waals
reactant complex, effectively submerging the subsequent
barrier to addition by 7 kJ mol−1 below the separated
reactants. The following process entails the addition of the
4-pyrenyl (C16H9

•) radical center to the terminal carbon of the
vinyl moiety of vinylacetylene (C4H4), forming doublet radical
intermediate i6. From here, i6 may undergo unimolecular
decomposition through atomic hydrogen loss, forming the side
chain product isomers cis- and trans-4-(1-buten-3-yne)pyrene
(p4 and p3), or follows a complex set of isomerization
reactions. These include hydrogen migration from the ortho
position of the attacked ring to the β carbon of the
vinylacetylene moiety (i6 → i7), a facile six-membered ring
closure (i7 → i8), an additional hydrogen migration from the

Figure 8. Potential energy diagrams leading to C22H12 isomers from the acetylene (C2H2)−1-benzo[e]pyrenyl (C20H11
•) reaction (a) and C24H12

isomers from the acetylene (C2H2)−7-benzo[ghi]perylenyl (C22H11
•) reaction (b) calculated at the G3(MP2,CC)//B3LYP/6-311G(d,p) level.
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C10 to C11 carbon of i8 (i8 → i9), and finally atomic
hydrogen loss with aromatization to benzo[e]pyrene (i9 →
p1). The vinylacetylene (C4H4)−4-pyrenyl (C16H9

•) reaction
is a typical reaction of the HAVA mechanism and a de facto
barrierless reaction featuring a submerged entrance channel
with all intermediates, products, and transition states lying
below the energy of the separate reactants; therefore, the
formation of benzo[e]pyrene (p1) through reaction 2 can
occur in low-temperature environments such as cold molecular
clouds.
For reaction 3, the phenyl radical (C6H5

•) can add to any of
the C1−C10 carbons of phenanthrene (C14H10); however,
only addition to the carbons at a terminal edge of a carbon bay,
i.e., symmetric C4 and C5, will yield benzo[e]pyrene (p1)
identified in the experiments. In detail (Figure 7c), two
reaction pathways are critical: the first with the phenyl radical
approaching the four-carbon bay and the second with the
phenyl radical approaching a three-carbon bay. Unlike typical
PAC mechanisms investigated thus far for smaller PAHs,78

both cases proceed first to a van der Waals complex upon
initial interaction of the reactants due to enhanced long-range
interactions in the entrance channels effectively submerging
the entrance barrier 4 and 2 kJ mol−1 below the reactants’
energy level, respectively. For the former, the phenyl radical
adds to the C4 carbon of phenanthrene, forming i13 followed
by stabilization via hydrogen atom loss to i15. Secondary
reactions of hydrogen atoms with i15 lead, through hydrogen
abstraction, to i16 followed by six-membered-ring cyclization
to i18 and finally hydrogen atom loss accompanied by
aromatization to benzo[e]pyrene (p1). Turning to the second
reaction pathway, the phenyl radical adds to the C9 carbon of
phenanthrene, forming i12. From here, the reaction follows the
same mechanistic steps from i12 → i14 → i17 as those shown
for i13 → i15 → i16. From i17, the intermediate undergoes
facile five-membered ring closure to i19 and then atomic
hydrogen loss coupled with aromatization to benzo[b]-
fluoranthene (p5). While the reactions are overall exoergic
and the entrance barriers are submerged below the energy of
the reactants for both pathways, there are still substantial
barriers that lie higher in energy than the reactants, thus
restraining reaction 3 to high-temperature environments.
Altogether, the computations for reactions 1−3 demonstrate
the facile formation of benzo[e]pyrene (p1) via three distinct
reaction mechanisms�HACA, HAVA, and PAC�which
correlate well with the aforementioned experimental findings.
The potential energy diagrams for reactions 4 and 5

eventually preparing coronene (p9) are compiled in Figure
8. For reaction 4, the benzo[e]pyrenyl (C20H11

•) reactant was
generated in situ by hydrogen abstraction from the benzo[e]-
pyrene (p1) product of reaction 1. Therefore, the benzo[e]-
pyrenyl radical center could be located at any of the outer
carbon atoms. However, the reaction can only lead to the
target molecule benzo[ghi]perylene (p6) if the radical center is
on the C1 or C12 carbon of benzo[e]pyrenyl, and thus, only
these two pathways are considered here (Figure 8a). Both
pathways are similar to that of reaction 1, albeit with distinct
energies of stabilization of the intermediates, transition states,
and products; the initial acetylene addition proceeds with an
entrance barrier followed by hydrogen migration and ring
closure, leading eventually to benzo[ghi]perylene (p6) via
hydrogen atom loss. Likewise, the final reaction in the
sequence to coronene (p1), reaction 5, mirrors the
aforementioned pathway starting with the 7-benzo[ghi]-

perylenyl radical (C22H11
•) addition to acetylene via a barrier

of 16 kJ mol−1 followed by hydrogen migration and ring
cyclization prior to unimolecular decomposition via hydrogen
atom loss to coronene (p9) in an overall exoergic reaction
(−274 kJ mol−1).

4. CONCLUSION
Our combined molecular beam and computational study
evidences the first bottom-up synthesis of the 24π aromatic
coronene (C24H12, p9) molecule�the simplest representative
of a peri-fused polycyclic aromatic hydrocarbon carrying a
central benzene moiety surrounded by six benzene rings. The
complex chain of elementary gas-phase reactions is initiated by
three aryl-radical-mediated ring annulation mechanisms, i.e.,
HACA (1), HAVA (2), and PAC (3), involving armchair,
zigzag, and arm-zig edged aromatics, respectively, highlighting
the chemical diversity of PAH growth pathways leading via
benzo[e]pyrene (C20H12, p1) and benzo[ghi]perylene (C22H12,
p6) intermediates to coronene (C24H12, p9). The isomer-
selective identification of five- to six-ringed aromatics
culminating with the detection of coronene (C24H12, p9) in
this multifaceted molecular mass growth process is achieved
through fragment-free vacuum ultraviolet photoionization
along with PIE curves and photoion ms-TPE spectra. The
high-temperature reaction conditions of up to 1500 K explored
here efficiently replicate the conditions in high-temperature
combustion systems and circumstellar envelopes of carbon
stars along with planetary nebulae as their descendants. The
convergence of molecular beam and computational studies
discloses an advancement to such a level that polyatomic
reactions involving aromatic radical transients relevant to
extreme astrochemical and combustion chemistry conditions
can be unraveled in concert, thus offering a versatile strategy to
explore the exotic chemistry of complex polycyclic aromatic
hydrocarbons via resonantly stabilized and aromatic free
radicals in deep space. These processes may ultimately be
expanded to two- and three-dimensional carbonaceous
nanostructures, such as graphenes and nanobowls, as molecular
building blocks of soot and interstellar grains, thereby
advancing our knowledge of the chemistry of carbonaceous
matter in the universe.

5. MATERIALS AND METHODS
5.1. Experimental Methods. The experiments were conducted

at the X04DB beamline of the Swiss Light Source at the Paul Scherrer
Institute utilizing a resistively heated silicon−carbide (SiC) chemical
microreactor coupled to a molecular beam apparatus operated with a
double velocity map imaging (VMI) photoelectron photoion
coincidence spectrometer.79−84 Four reaction systems were studied:
acetylene (C2H2) with 1-bromotriphenylene (C18H11Br), vinyl-
acetylene (C4H4) with 4-bromopyrene (C16H9Br), nitrosobenzene
(C6H5NO) with phenanthrene (C14H10), and acetylene (C2H2) with
7-bromobenzo[ghi]perylene (C22H11Br). Briefly, 1-bromotripheny-
lene (C18H11Br), 4-bromopyrene (C16H9Br), phenanthrene (C14H10;
98%; Sigma-Aldrich), and 7-bromobenzo[ghi]perylene (C22H11Br)
were heated at 423 ± 1, 403 ± 1, 358 ± 1, and 513 ± 1 K in a high-
vacuum oven located in the source chamber and were seeded in
acetylene (C2H2; ≥99.5%; PANGAS; acetone traces removed via
ethanol/dry ice bath), vinylacetylene (C4H4; 5% in helium, Applied
Gas Inc.), nitrosobenzene (C6H5NO; 97%, Sigma-Aldrich; seeded at
<1% in helium), and acetylene at backing pressures of 100, 100, 125,
and 220 mbar, respectively. The gas mixtures were introduced
through a 0.2 mm nozzle to the SiC microreactor, which had a 1 mm
inner diameter and heated length of 20 mm kept at 1300 ± 100, 1400
± 100, 1300 ± 100, and 1500 ± 100 K, respectively. Products formed
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attained supersonic expansion upon exiting the reactor and passed
through a 2 mm diameter skimmer into the spectrometer chamber,
where they were photoionized by vacuum ultraviolet (VUV) light at
photon energies from 7 to 9 eV. Photoions and photoelectrons are
extracted by a constant electric field of 218 V cm−1 and collected in
coincidence via VMI on two position-sensitive delay-line anode
detectors (Roentdek DLD40). These experiments provide PIE curves,
which depict ion counts versus photon energy at a specific mass-to-
charge ratio and ms-TPE spectra, which are collected from the same
method as the PIE curves while selecting only photoions at the
desired m/z in coincidence with the photoelectrons having a kinetic
energy less than 10 meV. The hot electron signal was subtracted from
the threshold (kinetic energy less than 10 meV) electrons using the
procedure by Sztaray et al.85 The PIE curves and ms-TPE spectra
were corrected due to the Stark shift86 and normalized to the photon
flux. Reference curves for benzo[e]pyrene were taken by subliming the
sample in a high-vacuum oven at 423 ± 1 K, seeding it in helium at a
backing pressure of 115 mbar, and passing it through the SiC reactor
without heating into the spectrometer chamber.

5.2. Computational Methods. Geometries of the reactants,
products, intermediates, and transition states for reactions 1−5 were
optimized using the density functional theory (DFT) B3LYP
method87,88 with the 6-311G(d,p) basis set, and vibrational
frequencies of all species were computed at the same B3LYP/6-
311G(d,p) level of theory. Single-point energies at the optimized
geometries were refined employing coupled cluster CCSD(T) and
second-order Møller−Plesset perturbation theory MP2 calculations,
with the final G3(MP2,CC) energy computed as89−91

[ ] = [ ]
+ [ ] [ ]
+ [ ]

E E

E E

G3(MP2, CC) CCSD(T)/6 31G(d)

MP2/G3Large MP2/6 31G(d)

ZPE B3LYP/6 311G(d, p)

The model chemistry G3(MP2,CC) scheme provides a chemical
accuracy of 0.01−0.02 Å for bond lengths, 1−2° for bond angles, and
3−6 kJ mol−1 for relative energies of hydrocarbons, their radicals,
reaction energies, and barrier heights in terms of average absolute
deviations.91

Adiabatic ionization energies of various C20H12, C22H12, and
C24H12 products were also computed using the G3(MP2,CC)//
B3LYP/6-311G(d,p) method with zero point energy (ZPE)
corrections; the expected accuracy in this case is ±0.05 eV. Moreover,
ionization Franck−Condon factors at 0 K needed for a comparison
with the experimental ms-TPE spectra were calculated using B3LYP/
6-311G(d,p)-optimized geometries and corresponding vibrational
frequencies of the neutral and cationic species using the methodology
implemented by Barone and co-workers.92 Electronic excitation
energies of the trans-4-(1-buten-3-yne)pyrene cation were estimated
within the time-dependent (TD)-DFT method93,94 with the ωB97XD
functional95 and cc-pVTZ basis set.96 All the ab initio and DFT
calculations were carried out using the GAUSSIAN 1697 (B3LYP,
ωB97XD, and evaluation of Franck−Condon factors) and MOLPRO
202198 (CCSD(T) and MP2) quantum chemistry program packages.
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