Supporting Information

Unraveling the Ignition Chemistry of Singly Levitated Aluminum Iodate Hexahydrate (AIH) Particles

Grace L. Rizzo,¹ Souvick Biswas,¹ Michelle L. Pantoya,^{*2} Ralf I. Kaiser^{*1}

¹Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA

² Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409-1021, USA

*E-mail: ralfk@hawaii.edu

*E-mail: michelle.pantoya@ttu.edu

Calibration Methods:

The wavelength-dependent sensitivity of the spectrometer system along with the optical fiber was calibrated using a calibrated light source (Hamamatsu High Power UV-Vis Fiber Light Source; 200 – 1600 nm). While in real time scope mode, the collection optics (optical fiber, Ocean Insight model: OCF-109248) are connected to the calibrated light source. The integration time (6 ms) and averaging levels (Average: 5) are adjusted to maximize the light output of the source. Once adjusted, the light is then blocked to obtain a dark (background) spectrum (Figure S30a). After the dark spectrum is collected, the light source is then unblocked, and the sensitivity calibration curve is captured. The resultant sensitivity curve is depicted in Figure S30b, which was then used for spectral analysis.

Figure S1. A schematic diagram of the levitator. Ultrasonic sound waves are generated by the piezoelectric transducer. A standing wave is generated due to multiple reflections between the transducer and the concave reflector. The micrometer displayed allows the distance between the transducer plate and the reflector to be adjusted. The pressure amplitude of the standing wave is monitored by connecting the output of the piezoelectric sensor via connector to an oscilloscope. The RF power to the transducer is input via the HF connector [1].

Figure S2. Optical and IR camera images taken during the levitation of AIH in 10% O_2 and 90% Ar. (a) represents the optical images taken during ignition. The image on the left at the beginning of the ignition and the right is point of the ignition where it is most intense. (b) represents the respective IR camera images to the images shown in (a). The respective temperatures are shown at the bottom of (b).

Figure S3. Optical and IR camera images taken during the levitation of AIH in 30% O_2 and 70% Ar. (a) represents the optical images taken during ignition. The image on the left at the beginning of the ignition and the right is point of the ignition where it is most intense. (b) represents the respective IR camera images to the images shown in (a). The respective temperatures are shown at the bottom of (b).

Figure S4. Optical and IR camera images taken during the levitation of AIH in 40% O_2 and 60% Ar. (a) represents the optical images taken during ignition. The image on the left at the beginning of the ignition and the right is point of the ignition where it is most intense. (b) represents the respective IR camera images to the images shown in (a). The respective temperatures are shown at the bottom of (b).

Figure S5. Optical and IR camera images taken during the levitation of AIH in 50% O_2 and 50% Ar. (a) represents the optical images taken during ignition. The image on the left at the beginning of the ignition and the right is point of the ignition where it is most intense. (b) represents the respective IR camera images to the images shown in (a). The respective temperatures are shown at the bottom of (b).

Figure S6. Optical and IR camera images taken during the levitation of AIH in 60% O_2 and 40% Ar. (a) represents the optical images taken during ignition. The image on the left at the beginning of the ignition and the right is point of the ignition where it is most intense. (b) represents the respective IR camera images to the images shown in (a). The respective temperatures are shown at the bottom of (b).

Figure S7. Optical and IR camera images taken during the levitation of AIH in 70% O_2 and 30% Ar. (a) represents the optical images taken during ignition. The image on the left at the beginning of the ignition and the right is point of the ignition where it is most intense. (b) represents the respective IR camera images to the images shown in (a). The respective temperatures are shown at the bottom of (b).

Figure S8. 3D plot of the AIH emission spectra when levitated in 10% O₂ and 90% Ar.

Figure S9. 3D plot of the AIH emission spectra when levitated in 30% O₂ and 70% Ar.

Figure S10. 3D plot of the AIH emission spectra when levitated in 40% O₂ and 60% Ar.

Figure S11. 3D plot of the AIH emission spectra when levitated in 50% O₂ and 50% Ar.

Figure S12. 3D plot of the AIH emission spectra when levitated in 60% O₂ and 40% Ar.

Figure S13. 3D plot of the AIH emission spectra when levitated in 70% O₂ and 30% Ar.

Figure S14. 3D plot of the AIH emission spectra when levitated in 80% O₂ and 20% Ar.

Figure S15. Deconvoluted UV-Vis emission spectrum of the levitated AIH particle in $10\% O_2$ and 90% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S1 for peak assignments.

Figure S16. Deconvoluted UV-Vis emission spectrum of the levitated AIH particle in $30\% O_2$ and 70% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S2 for peak assignments.

Figure S17. Deconvoluted UV-Vis emission spectrum of the levitated AIH particle in 40% O₂ and 60% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S3 for peak assignments.

Figure S18. Deconvoluted UV-Vis emission spectrum of the levitated AIH particle in 50% O_2 and 50% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S4 for peak assignments.

Figure S19. Deconvoluted UV-Vis emission spectrum of the levitated AIH particle in $60\% O_2$ and 40% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S5 for peak assignments.

Figure S20. Deconvoluted UV-Vis emission spectrum of the levitated AIH particle in 70% O_2 and 30% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S6 for peak assignments.

Figure S21. Deconvoluted UV-Vis emission spectrum of the levitated AIH particle in $80\% O_2$ and 20% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S7 for peak assignments.

Figure S22. Emission profiles from the most intense peaks of each individual species in $10\% O_2$ and 90% Ar.

Figure S23. Emission profiles from the most intense peaks of each individual species in 20% O_2 and 80% Ar.

Figure S24. Emission profiles from the most intense peaks of each individual species in 30% O_2 and 70% Ar.

Figure S25. Emission profiles from the most intense peaks of each individual species in 40% O_2 and 60% Ar.

Figure S26. Emission profiles from the most intense peaks of each individual species in 50% O_2 and 50% Ar.

Figure S27. Emission profiles from the most intense peaks of each individual species in 60% O_2 and 40% Ar.

Figure S28. Emission profiles from the most intense peaks of each individual species in 70% O_2 and 30% Ar.

Figure S29. Emission profiles from the most intense peaks of each individual species in 80% O_2 and 20% Ar.

Figure S30. (a) Dark (background) spectrum and (b) the wavelength dependent detection sensitivity curve for the UV-Vis spectrometer and fiber optic probe combined.

Figure S31. Temperature time profiles for the ignition of an AIH particle in 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% O₂.

Figure S32. Optical and IR camera images taken during the levitation of AID in 20% O_2 and 80% Ar. (a) represents the optical images taken during ignition. The image on the left at the beginning of the ignition and the right is point of the ignition where it is most intense. (b) represents the respective IR camera images to the images shown in (a). The respective temperatures are shown at the bottom of (b).

Figure S33. Emission profiles from the most intense peaks of each individual species in AID levitated in 20% O₂ and 80% Ar.

Figure S34. Temperature time profile for the ignition of an AID particle in 20% O₂.

Figure S35. 3D plot of the AID emission spectra when levitated in 20% O_2 and 80% Ar.

Figure S36. Deconvoluted UV-Vis emission spectrum of the levitated AID particle in $20\% O_2$ and 80% Ar. (a) represents the wavelength region from 200 to 400 nm and (b) represents the wavelength region from 400 to 700 nm. See Table S9 for peak assignments.

Table S1: Peak assignments for the deconvoluted emission spectrum of AIH particle levitated in $10\% O_2$ and 90% Ar

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24}$		vibrational
					quantum
					numbers:
					(v', v'') or
					(v1',v2',v3') –
				~ 2	(v1",v2",v3")
а	340.7	AlO	340	$C^2 \Pi - X^2 \Sigma^{\dagger}$	(0,4)
		Al	343	$3p^2 + P - 3p^2 P^0$	3/2 - 1/2
		Na	343	$3d^2D - 3s^2S;$	3/2 - 1/2;
				$3d^{4}F^{6} - 3p(^{5}P^{6})$ ^{4}S	5/2 - 3/2
b	345.1	Al	344	$3p^2 {}^4P - 3p {}^2P^o$	5/2 - 3/2; 1/2 - 1/2
		Na	343	$3d^{2}D - 3s^{2}S;$	3/2 - 1/2; 5/2 - 3/2
		Na	348	$3d {}^{4}F^{o} - 3p({}^{3}P^{o})$	5/2 - 3/2
				$3d^{4}D^{0} - 3n(^{3}P^{0})$	
				⁴ S	
с	352.6	Na	350	$3d^{4}P^{o} - 3p(^{3}P^{o})$	3/2 - 3/2;
			351	^{4}S	1/2 - 3/2
d	366.1	Li	367	$9d^{2}D - 2p^{2}P^{0}$	3/2 - 1/2;
		K	364	$4d^{2}D - 4s^{2}S$	3/2 - 3/2;
					5/2 - 3/2
					3/2 - 1/2;
					5/2 - 1/2
e	369.9	Li	371	$8d^{2}D - 2p^{2}P^{0}$	3/2 - 1/2;
					5/2 - 3/2;
					3/2 - 3/2
f	395.0	Al	394	$4s^{2}S - 3p^{2}P^{o}$	1/2 - 1/2
		Al	396	$4s^{2}S - 3p^{2}P^{o}$	1/2 - 3/2
		0	394	4p ⁵ P – 3s ⁵ S ^o	3-2; 2-2; 1-2
g	441.5	IO	440	$A^2\Pi_{3/2} - X^2\Pi_{3/2}$	(2,1)
h	476.4	K	474	$13s^{2}S - 4p^{2}P^{0};$	1/2 - 1/2; 3/2 - 1/2
				$11d^{2}D - 4p^{2}P^{0}$	
i	481.0	Ι	476	$7p^{2}[1]^{o}-6s$	3/2 - 5/2
				² [2]	
j	484.5	AlO	485	B $^2\Sigma^+\!\!-X$ $^2\Sigma^+$	(0,0)
k	496.0	K	496	$8d^{2}D - 4p^{2}P^{0}$	5/2 - 3/2
1	508.3	I ₂	509	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(46,0)
m	512.7	AlO	510	$\mathrm{B}\ ^{2}\Sigma^{+}-\mathrm{X}\ ^{2}\Sigma^{+}$	(0,1)
		Ι	511		3/2 - 3/2

				$7p^{2}[1]^{o}-6s$	
				² [2]	
n	517.4	Na	516	$4s^{4}P^{o} - 3p(^{3}P^{o})$	5/2 - 5/2
				⁴ D	
0	521.8	Ι	523	$7p^{2}[3]^{\circ}-6s$	5/2 - 3/2
				² [2]	
р	528.3	Na	525	$4s^{4}P^{o} - 3p(^{3}P^{o})$	5/2 - 3/2
				⁴ D	
q	541.7	Ι	542	$6p^{2}[1]^{o}-6s$	3/2 - 5/2
		I ₂	545	² [2]	(25,0)
				$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	
r	564.3	AlO	565	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(2,5)
S	583.0	I ₂	585	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,2)
t	592.1	I ₂	592	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(14,2)
		Na	589	$3p^{2}P^{0} - 3s^{2}S$	1/2 - 1/2
u	598.6	I ₂	600	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(12,2)
v	611.1	I ₂	611	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(11,3)
		Li	610	$3d^2D - 2p^2P^o$	3/2 - 1/2;
		0	615	$4d {}^{5}D^{o} - 3p {}^{5}P$	5/2 - 3/2;
					3/2 - 3/2
					1-1; 3-2; 4-3
W	638.2	I ₂	636	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(7,4)

Table S2: Peak assignments for the deconvoluted emission spectrum of AIH particle levitated in 30% O_2 and 70% Ar

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24}$		vibrational
					quantum
					numbers:
					(v', v'') or
					(v1',v2',v3') –
					(v1",v2",v3")
a	217.7	Al	215	$8d^{2}D - 3p^{2}P^{o}$	5/2 - 3/2; 3/2 - 3/2
b	245.7	AlO	245	$D^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(1,0)
с	299.2	AlO	296	$\mathrm{C}~^{2}\Pi - \mathrm{X}~^{2}\Sigma^{+}$	(1,0)
		0	297	$2p^{4} {}^{1}S - 2p^{4} {}^{3}P$	0 – 1
d	308.8	OH	310	$\mathrm{A}{}^{2}\Sigma^{+}\!\!-\mathrm{X}{}^{2}\Pi$	(0-0), (1-1)
		Al	309	$3d^{2}D - 3p^{2}P^{o}$	5/2 - 3/2; 3/2 - 3/2
e	333.9	AlO	332	$\mathrm{C}\ ^{2}\Pi - \mathrm{X}\ ^{2}\Sigma^{+}$	(2,5)
f	398.2	Al	396	$4s^{2}S - 3p^{2}P^{o}$	1/2 - 3/2
		Al	394	$4s^{2}S - 3p^{2}P^{o}$	1/2 - 1/2
		0	394	$4p {}^{5}P - 3s {}^{5}S^{o}$	3-2; 2-2; 1-2
g	428.2	Na	425	$3d^{4}D^{o} - 3p(^{3}P^{o})$	5/2 - 3/2
		Al	425	⁴ P	5/2 - 5/2
				$3d^2D^{\circ} - 5d^2D$	
h	437.0	IO	440	$A^{2}\Pi_{3/2} - X^{2}\Pi_{3/2}$	(2,1)
i	454.9	AlO	451	$\mathrm{B}\ ^{2}\Sigma^{+}\!\!-\mathrm{X}\ ^{2}\Sigma^{+}$	(3,1)
j	463.0	Li	460	$4d^{2}D - 2p^{2}P^{0}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 – 3/2
k	470.5	AlO	467	$B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	(1,0)
1	479.9	Ι	476	$7p^{2}[1]^{o}-6s$	3/2 - 5/2
				² [2]	
m	484.1	AlO	485	$B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	(0,0)
n	487.0	Ι	486	$7p^{2}[3]^{o}-6s$	7/2 - 5/2
				² [2]	
0	491.9	Ι	491	$7p^{2}[2]^{o}-6s$	5/2 - 5/2
				² [2]	
р	500.8	K	496	$8d^2D - 4p^2P^o$	5/2 - 3/2
q	509.9	I ₂	509	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(46,0)
r	529.5	Na	525	$4s {}^{4}P^{o} - 3p({}^{3}P^{o})$	5/2 - 3/2
				⁴ D	
S	543.4	Ι	542	$6p^{2}[1]^{o} - 6s$	3/2 - 5/2
		I ₂	545	² [2]	(25,0)
				$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	
t	552.7	IO	550	$A^{2}\Pi_{3/2} - X^{2}\Pi_{3/2}$	(2,5)
u	577.6	I ₂	578	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,1)

v	585.4	I ₂	585	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,2)
		Na	588	$3p^{2}P^{0} - 3s^{2}S$	3/2 - 1/2
W	590.7	I ₂	592	${ m B}~^{3}\Pi_{0+u} - { m X}~^{1}\Sigma_{g}^{+}$	(14,2)
		Na	589	$3p^{2}P^{0} - 3s^{2}S$	1/2 - 1/2
Х	596.5	I ₂	596	${ m B}~^{3}\Pi_{0+u} - { m X}~^{1}\Sigma_{g}^{+}$	(13,2)
		AlO	595	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(2,6)
у	610.7	I ₂	611	${ m B}~^{3}\Pi_{0+u} - { m X}~^{1}\Sigma_{g}^{+}$	(11,3)
		Li	610	$3d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 - 3/2
Z	624.4	I_2	623	${ m B}~^{3}\Pi_{0+u} - { m X}~^{1}\Sigma_{g}^{+}$	(10,4)
<u>a</u>	632.2	I ₂	632	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(8,4)
<u>b</u>	638.0	I ₂	636	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(7,4)
<u>c</u>	645.2	I ₂	641	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(8,5)
		0	645	5s ⁵ S ^o – 3p ⁵ P	2-1; 2-2; 2-3
<u>d</u>	653.2	I ₂	654	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(7,6)
<u>e</u>	658.8	0	660	$5s {}^{1}D^{o} - 3p {}^{1}F$	2–3
<u>f</u>	667.9	I ₂	664	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(5,6)
g	675.2	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
		Li	670	$2p {}^{2}P^{o} - 2s {}^{2}S$	3/2 – 1/2; 1/2 – 1/2
<u>h</u>	683.5	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
<u>i</u>	692.2	H ₂ O	690-710	ro-vib. mode	(1,0,3) - (0,0,0)
		K	693	$4d^{2}D - 4p^{2}P^{o};$	3/2 - 1/2; 1/2 - 3/2
				$6s^{2}S - 4p^{2}P^{0}$	

Table S3: Peak assignments for the deconvoluted emission spectrum of AIH particle levitated in 40% O_2 and 60% Ar

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24}$		vibrational
					quantum
					numbers:
					(ν',ν'') or
					(v1',v2',v3') –
					(v1",v2",v3")
a	235.0	AlO	235	$D^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(3,0)
b	242.9	Li	242	$7p^{2}P^{o} - 2s^{2}S$	3/2 - 1/2; 1/2 - 1/2
с	267.0	AlO	269	$D^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(1,4)
d	286.5	OH	287 - 289	$A^2\Sigma^+ - X^2\Pi$	$R_1, R_2, Q_1, Q_2; (2,$
		Na	285	$5p^{2}P^{o} - 3s^{2}S$	1)
					3/2 - 1/2; 1/2 - 1/2
e	302.0	AlO	303	$\mathrm{C}~^{2}\Pi - \mathrm{X}~^{2}\Sigma^{+}$	(0,0)
f	311.3	OH	310	$\mathrm{A}{}^{2}\Sigma^{+}$ $-\mathrm{X}{}^{2}\Pi$	(0-0), (1-1)
g	342.5	Al	343	$3p^2 {}^4P - 3p {}^2P^o$	3/2 - 1/2
_		Na	343	$3d^{2}D - 3s^{2}S;$	3/2 - 1/2; 5/2 - 3/2
		Al	344	$3d {}^{4}F^{o} - 3p({}^{3}P^{o})$	5/2 - 3/2; 1/2 - 1/2
				^{4}S	
				$3p^2 {}^4P - 3p {}^2P^\circ$	
h	347.7	Na	348	$3d^{4}D^{o} - 3p(^{3}P^{o})$	5/2 - 3/2
				⁴ S	
i	378.9	Li	379	$7d^{2}D - 2p^{2}P^{o}$	3/2 – 1/2; 5/2 –
				2 2	3/2; 3/2 – 3/2
j	400.8	Al	396	$\frac{4s^2S - 3p^2P^o}{2}$	1/2 - 3/2
k	407.5	K	404	$5p^2P^{o} - 4s^2S$	3/2 - 1/2; 1/2 - 1/2
1	410.8	Ι	410	$6p^{2}[3]^{o}-6s$	7/2 - 5/2
				² [2]	
m	416.2	Na	418	$3d {}^{4}D^{\circ} - 3p({}^{3}P^{\circ})$	5/2 - 5/2
				⁴ P	- / /-
n	425.4	Na	425	$3d^{4}D^{0} - 3p(^{3}P^{0})$	5/2 - 3/2
		Al	425	^{+}P	5/2 - 5/2
	421.1	N	122	$3d^2D^0 - 5d^2D$	
0	431.1	Na	432	$9d^2D - 3p^2P^0$	3/2 - 1/2; 3/2; 3/2 - 1/2; 3/2; 3/2; 3/2; 3/2; 3/2; 3/2; 3/2; 3
	440.0	IO	4.40		3/2; 5/2 - 3/2
p	440.0	10	440	$A^{2}II_{3/2} - X^{2}II_{3/2}$	(2,1)
q	448.8	AlO	451	$\frac{B^2\Sigma^2 - X^2\Sigma^2}{A^2\Sigma^2}$	(3,1)
r	457.5	Li	460	$4d^2D - 2p^2P^{o}$	3/2 - 1/2; 5/2 - 3/2
				21^{2}	3/2; 3/2 - 3/2
S	461.6	K	464	$3d^2D - 4s^2S$	5/2 - 1/2
t	465.5	AlO	467	$\mathrm{B}^{2}\Sigma^{+}-\mathrm{X}^{2}\Sigma^{+}$	(1,0)

u	475.3	K	474	$13s^{2}S - 4p^{2}P^{o};$	1/2 - 1/2; 3/2 - 1/2
				$11d^{2}D - 4p^{2}P^{0}$	
v	488.0	AlO	485	$B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	(0,0)
		Ι	486	$7p^{2}[3]^{\circ}-6s$	7/2 - 5/2
				² [2]	
W	504.2	Na	507	$4s {}^{4}P^{o} - 3p({}^{3}P^{o})$	7/2 - 5/2
				⁴ D	
х	514.0	Na	516	$4s^{4}P^{o} - 3p(^{3}P^{o})$	5/2 - 5/2
				⁴ D	
У	521.7	Ι	523	$7p^{2}[3]^{o}-6s$	5/2 - 3/2
				² [2]	
Z	533.1	I ₂	532	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(32,0)
<u>a</u>	541.9	Ι	542	$6p^{2}[1]^{o}-6s$	3/2 - 5/2
		I ₂	545	² [2]	(25,0)
				$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	
<u>b</u>	557.3	Na	556	$4s^{4}P^{o} - 3p(^{3}P^{o})$	3/2 - 3/2
		Al	555	⁴ P	3/2 - 1/2; 1/2 - 1/2
				$6p^{2}P^{o} - 4s^{2}S$	
<u>c</u>	570.9	I ₂	574	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(17,1)
<u>d</u>	581.2	I_2	585	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,2)
<u>e</u>	591.2	I ₂	592	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(14,2)
		Na	589	$3p^{2}P^{0} - 3s^{2}S$	1/2 - 1/2
<u>f</u>	602.9	I ₂	600	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(12,2)
g	611.5	I ₂	611	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(11,3)
		Li	610	$3d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 - 3/2
h	616.3	I ₂	615	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(10,3)
		0	615	$4d^{5}D^{o} - 3p^{5}P$	1-1; 3-2; 4-3
i	620.9	I ₂	619	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(9,3)
i	629.3	I ₂	628	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(9,4)
k	638.1	I2	636	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{\sigma}^{+}$	(7,4)
1	649.9	I2	649	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(8.6)
 	663.1	0	660	$5s^{1}D^{0} - 3n^{1}F$	2_3
<u> </u>	00011	I ₂	664	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{\sigma}^{+}$	(5.6)
n	672 7	H ₂ O	632-683	ro-vib mode	(1,1,3) = (1,5,1)
<u><u> </u></u>	012.1	Li	670	$2n^{2}P^{0} - 2s^{2}S$	$3/2 = 1/2 \cdot 1/2 = 1/2$
6	670.0	H-O	632 682	2p - 2s - 3	$(1 \ 1 \ 2)$ $(1 \ 5 \ 1)$
<u><u>u</u></u>	(07.)		600 710		(1,1,3) - (1,3,1)
<u>p</u>	08/.0	H_2O	090-/10	ro-vib. mode	(1,0,3) - (0,0,0)

Table S4: Peak assignments for the deconvoluted emission spectrum of AIH particle levitated in 50% $\rm O_2$ and 50% $\rm Ar$

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24}$		vibrational
					quantum
					numbers:
					(v', v'') or
					(v1',v2',v3') –
					(v1",v2",v3")
а	226.6	Al	226	$5d^{2}D - 3p^{2}P^{o}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 - 3/2
b	246.3	AlO	249	$D\ ^2\Sigma^+-\ X\ ^2\Sigma^+$	(0,0)
с	257.5	Li	256	$5p^{2}P^{o} - 2s^{2}S$	3/2 – 1/2; 1/2 – 1/2
d	268.3	AlO	269	$D\ ^2\Sigma^+-\ X\ ^2\Sigma^+$	(1,4)
e	290.5	Al	291	$4d^{2}D^{o} - 4d^{2}D$	5/2 - 5/2; 3/2 - 3/2
		AlO	289	$\mathrm{C}~^2\Pi - \mathrm{X}~^2\Sigma^+$	(3,1)
f	297.0	0	297	$2p^{4} {}^{1}S - 2p^{4} {}^{3}P$	0-1
g	319.8	Al	320	$4d^{2}D^{o} - 6d^{2}D$	5/2 - 5/2
h	341.0	Al	343	$3p^2 {}^4P - 3p {}^2P^o$	3/2 - 1/2
		Na	343	$3d^{2}D - 3s^{2}S;$	3/2 - 1/2; 5/2 - 3/2
				$3d {}^{4}F^{o} - 3p({}^{3}P^{o})$	
				⁴ S	
i	348.8	Na	348	$3d^{4}D^{o} - 3p(^{3}P^{o})$	5/2 - 3/2
				^{4}S	
j	369.2	Li	371	$8d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 – 3/2
k	377.3	Li	379	$7d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 – 3/2
1	398.3	Al	396	$4s^{2}S - 3p^{2}P^{0}$	1/2 - 3/2
m	401.9	Na	399	$3d {}^{4}P^{o} - 3p({}^{3}P^{o})$	3/2 - 3/2
		Na	400	⁴ D	1/2 - 3/2
				$3d^{4}P^{o} - 3p(^{3}P^{o})$	
				^{4}D	
n	404.6	K	404	$5p^{2}P^{o} - 4s^{2}S$	3/2 - 1/2; 1/2 - 1/2
0	451.4	AlO	451	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(3,1)
р	470.0	AlO	467	B $^2\Sigma^+\!\!-X$ $^2\Sigma^+$	(1,0)
q	485.9	AlO	485	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(0,0)
		Ι	486	7p ² [3] ^o – 6s	7/2 - 5/2
				² [2]	
r	495.3	Ι	491	$7p^{2}[2]^{o}-6s$	5/2 - 5/2
		K	496	² [2]	5/2 - 3/2
				$8d^{2}D - 4p^{2}P^{0}$	

S	503.7	Na	507	$4s {}^{4}P^{o} - 3p({}^{3}P^{o})$	7/2 - 5/2
				⁴ D	
t	527.4	Na	525	$4s^{4}P^{o} - 3p(^{3}P^{o})$	5/2 - 3/2
				⁴ D	
u	533.4	I ₂	532	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(32,0)
v	539.6	AlO	538	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(1,3)
W	545.6	Ι	542	$6p^{2}[1]^{o}-6s$	3/2 - 5/2
		I ₂	545	² [2]	(25,0)
				${ m B}~^{3}\Pi_{0+u} - { m X}~^{1}\Sigma_{g}^{+}$	
Х	559.2	0	557	$2p^{4} {}^{1}S - 2p^{4} {}^{1}D$	0–2
у	580.0	I ₂	578	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,1)
Z	594.6	I ₂	592	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(14,2)
<u>a</u>	605.1	I ₂	604	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(13,3)
<u>b</u>	624.3	I ₂	623	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(10,4)
<u>c</u>	641.5	I ₂	641	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(8,5)
		0	645	5s ⁵ S ^o – 3p ⁵ P	2-1; 2-2; 2-3
<u>d</u>	652.9	I ₂	654	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(7,6)
e	659.5	0	660	$5s^{1}D^{o} - 3p^{1}F$	2–3
<u>f</u>	674.6	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
		Li	670	$2p^{2}P^{o} - 2s^{2}S$	3/2 - 1/2; 1/2 - 1/2

Table S5: Peak assignments for the deconvoluted emission spectrum of AIH particle levitated in 60% O_2 and 40% Ar

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24}$		vibrational
					quantum
					numbers:
					(v', v'') or
					(v1',v2',v3') –
					(v1",v2",v3")
a	215.4	Al	215	$8d^2D - 3p^2P^o$	5/2 - 3/2; 3/2 - 3/2
b	282.6	AlO	282	$D^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(0,5)
с	295.9	AlO	296	$C^2\Pi - X^2\Sigma^+$	(1,0)
d	360.5	Li	361	$4s {}^{4}P^{o} - 2p^{2} {}^{4}P$	5/2 - 5/2; 3/2 -
					5/2; 5/2 - 3/2; 3/2
					-3/2; 1/2 - 3/2;
					3/2 - 1/2; 1/2 - 1/2
e	369.6	Li	367	$9d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 3/2 -
					3/2; 5/2 – 3/2
f	381.0	Li	379	$7d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 - 3/2
g	406.4	K	404	$5p^{2}P^{o} - 4s^{2}S$	3/2 - 1/2; 1/2 - 1/2
h	420.2	Na	418	$3d^{4}D^{o} - 3p(^{3}P^{o})$	5/2 - 5/2
				⁴ P	
i	440.0	IO	440	$A^{2}\Pi_{3/2} - X^{2}\Pi_{3/2}$	(2,1)
j	479.5	Ι	476	$7p^{2}[1]^{o}-6s$	3/2 - 5/2
		_		2[2]	- / /-
k	494.1	Ι	491	$7p^{2}[2]^{\circ}-6s$	5/2 - 5/2
		K	496	2[2]	5/2 - 3/2
				$8d^2D - 4p^2P^0$	
1	513.9	Na	516	$4s {}^{4}P^{0} - 3p({}^{3}P^{0})$	5/2 - 5/2
		-		*D	- / /-
m	522.2	1	523	$7p^{2}[3]^{\circ}-6s$	5/2 - 3/2
				$\frac{2[2]}{2}$	
n	530.2	l ₂	532	$B^{-3}\Pi_{0+u} - X^{-1}\Sigma_{g}$	(32,0)
0	534.9	AlO	538	$B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	(1,3)
р	540.3	Ι	542	$6p^{2}[1]^{o} - 6s$	3/2 - 5/2
		I ₂	545	² [2]	(25,0)
				$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	
q	544.8	IO	550	$A^{2}\Pi_{3/2} - X^{2}\Pi_{3/2}$	(2,5)
r	569.9	AlO	565	$B^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(2,5)
S	584.7	I ₂	585	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,2)
t	600.8	I ₂	600	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(12,2)
u	613.0	I ₂	615	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(10,3)

		0	615	$4d {}^{5}D^{o} - 3p {}^{5}P$	1-1; 3-2; 4-3
		I ₂	611	${ m B}~^{3}\Pi_{0+u} - { m X}~^{1}\Sigma_{g}^{+}$	(11,3)
v	618.9	I ₂	619	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(9,3)
W	626.6	I ₂	628	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(9,4)
Х	636.0	I ₂	636	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(7,4)
у	642.3	I ₂	641	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(8,5)
Z	646.0	0	645	$5s {}^{5}S^{o} - 3p {}^{5}P$	2-1; 2-2; 2-3
<u>a</u>	661.7	0	660	$5s {}^{1}D^{o} - 3p {}^{1}F$	2–3
<u>b</u>	677.1	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
<u>c</u>	690.3	H ₂ O	690-710	ro-vib. mode	(1,0,3) - (0,0,0)
		K	693	$4d^{2}D - 4p^{2}P^{o};$	3/2 - 1/2; 1/2 - 3/2
				$6s^{2}S - 4p^{2}P^{o}$	

Table S6: Peak assignments for the deconvoluted emission spectrum of AIH particle levitated in 70% O_2 and 30% Ar

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24}$		vibrational
					quantum
					numbers:
					(v', v'') or
					(v1',v2',v3') –
					(v1",v2",v3")
a	235.5	AlO	235	$D^2\Sigma^+ - X^2\Sigma^+$	(3,0)
b	267.3	AlO	269	$D^2\Sigma^+ - X^2\Sigma^+$	(1,4)
с	369.9	Li	371	$8d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 – 3/2
d	400.0	Na	399	$3d^{4}P^{o} - 3p(^{3}P^{o})$	3/2 - 3/2
		Na	400	⁴ D	1/2 - 3/2
				$3d^{4}P^{o} - 3p(^{3}P^{o})$	
				⁴ D	
e	416.8	Na	418	$3d {}^{4}D^{o} - 3p({}^{3}P^{o})$	5/2 - 5/2
				⁴ P	
f	426.7	Na	425	$3d {}^{4}D^{o} - 3p({}^{3}P^{o})$	5/2 - 3/2
		Al	425	⁴ P	5/2 - 5/2
				$3d^{2}D^{o} - 5d^{2}D$	
g	489.4	Ι	486	$7p^{2}[3]^{o}-6s$	7/2 - 5/2
	100.5		10.6	² [2]	- / / -
h	499.5	K	496	$\frac{8d^2D - 4p^2P^{\circ}}{2}$	5/2 - 3/2
i	510.5	AlO	510	$B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	(0,1)
		Ι	511	$7p^{2}[1]^{\circ}-6s$	3/2 - 3/2
				² [2]	
j	521.1	Ι	523	$7p^{2}[3]^{\circ}-6s$	5/2 - 3/2
				² [2]	
k	529.4	Na	525	$4s {}^{4}P^{o} - 3p({}^{3}P^{o})$	5/2 - 3/2
				4D	
1	543.3	Ι	542	$6p^{2}[1]^{\circ} - 6s$	3/2 - 5/2
		I ₂	545	² [2]	(25,0)
				$B^{-3}\Pi_{0+u} - X^{-1}\Sigma_{g}^{+}$	
m	557.4	Na	556	$4s {}^{4}P^{o} - 3p({}^{3}P^{o})$	3/2 - 3/2
		Al	555	⁴ P	3/2 - 1/2; 1/2 - 1/2
				$6p^2P^0 - 4s^2S$	
n	572.1	I ₂	574	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(17,1)
0	583.6	I ₂	585	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,2)
р	600.8	I ₂	600	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(12,2)
q	626.4	I ₂	623	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(10,4)
r	663.3	0	660	$5s {}^{1}D^{o} - 3p {}^{1}F$	2–3
		I ₂		$B \ ^{3}\Pi_{0^{+}u} - X \ ^{1}\Sigma_{g} \ ^{+}$	(5,6)

			664		
S	674.0	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
		Li	670	$2p {}^{2}P^{o} - 2s {}^{2}S$	3/2 - 1/2; 1/2 - 1/2
t	679.0	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
u	696.3	H ₂ O	690-710	ro-vib. mode	(1,0,3) - (0,0,0)

Table S7: Peak assignments for the deconvoluted emission spectrum of AIH particle levitated in 80% O_2 and 20% Ar

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24}$		vibrational
					quantum
					numbers:
					(v', v'') or
					(v1',v2',v3') –
					(v1",v2",v3")
a	204.7	Ι	206	$6s^{2}[2] - 5p^{5}^{2}P^{o}$	3/2 - 1/2
b	215.9	Al	215	$8d^{2}D - 3p^{2}P^{o}$	5/2 - 3/2; 3/2 - 3/2
с	243.4	Li	242	$7p^{2}P^{o} - 2s^{2}S$	3/2 - 1/2; 1/2 - 1/2
d	258.6	AlO	255	$D^2\Sigma^+ - X^2\Sigma^+$	(0,1)
e	261.9	AlO	262	$D^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(0,2)
f	265.7	AlO	269	$D^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(1,4)
g	278.9	AlO	275	$D\ ^2\Sigma^+-\ X\ ^2\Sigma^+$	(1,5)
h	295.7	AlO	296	$C^2\Pi - X^2\Sigma^+$	(1,0)
		0	297	$2p^{4} {}^{1}S - 2p^{4} {}^{3}P$	0-1
i	321.8	AlO	322	$\mathrm{C}^{2}\Pi - \mathrm{X}^{2}\Sigma^{+}$	(1,3)
j	335.5	AlO	340	$\mathrm{C}~^{2}\Pi - \mathrm{X}~^{2}\Sigma^{+}$	(0,4)
k	354.8	Na	350	$3d^{4}P^{o} - 3p(^{3}P^{o})$	3/2 - 3/2;
			351	^{4}S	1/2 - 3/2
1	377.0	Li	379	$7d^{2}D - 2p^{2}P^{0}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 – 3/2
m	386.2	Na	384	$3d^{4}F^{o} - 3p(^{3}P^{o})$	5/2 - 5/2
		Na	386	⁴ D	7/2 - 7/2
				$3d^{4}F^{o} - 3p(^{3}P^{o})$	
				⁴ D	
n	392.8	Al	394	$4s^{2}S - 3p^{2}P^{o}$	1/2 - 1/2
		0	394	$4p {}^{5}P - 3s {}^{5}S^{\circ}$	3-2; 2-2; 1-2
0	402.1	Na	399	$3d^{4}P^{o} - 3p(^{3}P^{o})$	3/2 - 3/2
		Na	400	⁴ D	1/2 - 3/2
				$3d^{4}P^{o} - 3p(^{3}P^{o})$	
				⁴ D	
р	406.9	K	404	$5p^{2}P^{o} - 4s^{2}S$	3/2 - 1/2; 1/2 - 1/2
q	428.3	Na	425	$3d^{4}D^{o} - 3p(^{3}P^{o})$	5/2 - 3/2
		Al	425	^{4}P	5/2 - 5/2
				$3d^{2}D^{o} - 5d^{2}D$	
r	439.0	IO	440	$A^2\Pi_{3/2} - X^2\Pi_{3/2}$	(2,1)
S	453.3	AlO	451	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(3,1)
t	461.1	Li	460	$4d^2D - 2p^2P^o$	3/2 - 1/2; 5/2 -
					3/2; 3/2 – 3/2
u	469.2	AlO	467	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(1,0)

V	499.3	K	496	$8d^{2}D - 4p^{2}P^{o}$	5/2 - 3/2
W	503.2	Na	507	$4s^{4}P^{o} - 3p(^{3}P^{o})$	7/2 - 5/2
				⁴ D	
Х	523.9	Ι	523	$7p^{2}[3]^{o}-6s$	5/2 - 3/2
				² [2]	
у	537.9	AlO	538	$\mathrm{B}~^{2}\Sigma^{+}-\mathrm{X}~^{2}\Sigma^{+}$	(1,3)
Z	543.6	Ι	542	$6p^{2}[1]^{o}-6s$	3/2 - 5/2
		I ₂	545	² [2]	(25,0)
				$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	
<u>a</u>	548.2	IO	550	A ${}^{2}\Pi_{3/2}$ – X ${}^{2}\Pi_{3/2}$	(2,5)
<u>b</u>	555.6	Na	556	$4s^{4}P^{o} - 3p(^{3}P^{o})$	3/2 - 3/2
		Al	555	⁴ P	3/2 - 1/2; 1/2 - 1/2
				$6p^{2}P^{o} - 4s^{2}S$	
<u>c</u>	565.1	AlO	565	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(2,5)
<u>d</u>	575.3	I ₂	574	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(17,1)
<u>e</u>	583.9	I ₂	585	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,2)
<u>f</u>	590.6	I ₂	592	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(14,2)
		Na	589	$3p^{2}P^{0} - 3s^{2}S$	1/2 - 1/2
g	601.4	I ₂	600	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(12,2)
<u>h</u>	607.2	I ₂	604	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(13,3)
<u>i</u>	610.9	I ₂	611	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(11,3)
		Li	610	$3d^{2}D - 2p^{2}P^{0}$	3/2 - 1/2; 5/2 -
					3/2; 3/2 - 3/2
j	618.8	I ₂	615	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(10,3)
		0	615	$4d {}^{5}D^{o} - 3p {}^{5}P$	1-1; 3-2; 4-3
<u>k</u>	631.5	I ₂	628	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(9,4)
<u>1</u>	672.6	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
		Li	670	$2p^{2}P^{0} - 2s^{2}S$	3/2 - 1/2; 1/2 - 1/2
<u>m</u>	676.3	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
<u>n</u>	679.6	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)

Table S8. Number of peaks in each species that are unique assignments with no overlapping assignments. Bolded species are the species with the most unique assignments. Non-bolded species are tentatively assigned. Dashes represent that the species is not detected at all and zeros represent the species that are assigned but have conflicting assignments with other species.

Species	10%	20%	30%	40%	50%	60%	70%	80%
Ι	2	3	3	2	0	2	2	2
AlO DX	-	4	1	2	2	1	2	4
AlO CX	0	3	1	1	0	1	-	2
Li	1	2	1	3	3	3	1	3
Al	0	0	1	1	3	1	0	1
OH	-	0	0	1	-	-	-	-
Na	3	9	1	5	4	2	3	4
0	0	3	1	0	3	2	0	0
K	2	3	1	3	1	1	1	2
ΙΟ	1	2	2	1	-	2	-	2
AIO BX	2	4	3	2	3	2	0	4
I ₂	4	8	7	8	6	7	4	5
H ₂ O	-	2	1	2	0	1	2	2

Table S9: Peak assignments for the deconvoluted emission spectrum of AID particle levitated in 20% O_2 and 80% Ar

Peak/band	Peak	Carrier	Reference	Transition	Branch; spin-orbit
	wavelength/band		wavelength		components;
	center (nm)		$(nm)^{22,23,24,27}$		vibrational
					quantum
					numbers:
					(v', v'') or
					(v1',v2',v3') –
				2 5 2	(v1",v2",v3")
a	205.7	Ι	206	$6s^{2}[2] - 5p^{5}^{2}P^{o}$	3/2 - 1/2
b	234.6	AlO	235	$D^2\Sigma^+ - X^2\Sigma^+$	(3,0)
c	240.7	Li	242	$7p^{2}P^{o} - 2s^{2}S$	3/2 - 1/2; 1/2 - 1/2
d	253.5	AlO	255	$D^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(0,1)
e	257.2	Li	256	$5p^{2}P^{o} - 2s^{2}S$	3/2 - 1/2; 1/2 - 1/2
f	264.3	OD	263	A $^{2}\Sigma^{+}$ – X $^{2}\Pi$	(3,1)
g	282.6	AlO	282	$D\ ^2\Sigma^+-\ X\ ^2\Sigma^+$	(0,5)
h	286.6	OH	287 - 289	$\mathrm{A}{}^{2}\Sigma^{+}$ $-\mathrm{X}{}^{2}\Pi$	$R_1, R_2, Q_1, Q_2; (2,$
		Na	285	$5p^{2}P^{o} - 3s^{2}S$	1)
					3/2 - 1/2; 1/2 - 1/2
i	289.7	Al	291	$4d^{2}D^{o} - 4d^{2}D$	5/2 - 5/2; 3/2 - 3/2
		AlO	289	$\mathrm{C}~^2\Pi - \mathrm{X}~^2\Sigma^+$	(3,1)
		OD	289	$\mathrm{A}^2\Sigma^+\!\!-\mathrm{X}^2\Pi$	(1,0)
j	294.6	OD	296	$\mathrm{A}{}^{2}\Sigma^{+}$ $-\mathrm{X}{}^{2}\Pi$	(3,2)
			297	$\mathrm{A}^2\Sigma^+\!\!-\mathrm{X}^2\Pi$	(2,0)
k	316.8	AlO	313	$\mathrm{C}~^{2}\Pi - \mathrm{X}~^{2}\Sigma^{+}$	(0,1)
1	321.2	Al	320	$4d^{2}D^{o} - 6d^{2}D$	5/2 - 5/2
m	324.5	AlO	322	$\mathrm{C}~^{2}\Pi - \mathrm{X}~^{2}\Sigma^{+}$	(1,3)
n	329.1	Na	330	$4p^{2}P^{o} - 3s^{2}S$	3/2 – 1/2; 1/2 – 1/2
0	348.1	Na	348	$3d^{4}D^{o} - 3p(^{3}P^{o})$	5/2 - 3/2
				⁴ S	
р	364.9	Κ	364	$4d^{2}D - 4s^{2}S$	3/2 - 1/2; 5/2 - 1/2
		Li	367	$9d^{2}D - 2p^{2}P^{o}$	3/2 - 1/2; 3/2 -
					3/2; 5/2 – 3/2
q	370.6	Li	371	$8d^{2}D - 2p^{2}P^{0}$	3/2 - 1/2; 5/2 -
_				_	3/2; 3/2 - 3/2
r	412.3	Ι	410	$6p^{2}[3]^{o}-6s$	7/2 - 5/2
				² [2]	
S	464.0	AlO	467	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(1,0)
t	478.2	Ι	476	$7p^{2}[1]^{o}-6s$	3/2 - 5/2
				² [2]	
u	495.3	Ι	491	$7p^{2}[2]^{o}-6s$	5/2 - 5/2
		Κ	496	² [2]	5/2 - 3/2
				$8d^{2}D - 4p^{2}P^{o}$	

V	505.5	Na	507	$4s^{4}P^{o} - 3p(^{3}P^{o})$	7/2 - 5/2
				⁴ D	
W	511.7	AlO	510	$\mathrm{B}~^{2}\Sigma^{+}$ $\mathrm{-}~\mathrm{X}~^{2}\Sigma^{+}$	(0,1)
		Ι	511	$7p^{2}[1]^{o}-6s$	3/2 - 3/2
				² [2]	
х	523.9	Ι	523	$7p^{2}[3]^{o}-6s$	5/2 - 3/2
				² [2]	
У	529.8	I ₂	532	${ m B}~^{3}\Pi_{0^{+}u} - { m X}~^{1}\Sigma_{g}^{+}$	(32,0)
Z	534.8	AlO	538	$B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	(1,3)
<u>a</u>	545.6	IO	550	$A^{2}\Pi_{3/2} - X^{2}\Pi_{3/2}$	(2,5)
<u>b</u>	556.9	Na	556	$4s^{4}P^{o} - 3p(^{3}P^{o})$	3/2 - 3/2
		Al	555	⁴ P	3/2 - 1/2; 1/2 - 1/2
				$6p^{2}P^{o} - 4s^{2}S$, , , , , , , , , , , , , , , , , , ,
<u>c</u>	568.8	AlO	565	$\mathrm{B}~^{2}\Sigma^{+}\!\!-\mathrm{X}~^{2}\Sigma^{+}$	(2,5)
<u>d</u>	583.6	I ₂	585	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(16,2)
<u>e</u>	590.8	I ₂	592	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(14,2)
		Na	589	$3p^{2}P^{0} - 3s^{2}S$	1/2 - 1/2
<u>f</u>	599.3	I ₂	600	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(12,2)
g	607.7	I ₂	604	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(13,3)
<u>h</u>	620.1	I ₂	619	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(9,3)
<u>i</u>	628.4	I ₂	628	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(9,4)
		I ₂	632	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(8,4)
i	635.9	I ₂	636	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(7,4)
<u>k</u>	651.5	I ₂	649	$B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$	(8,6)
<u>1</u>	662.4	0	660	$5s {}^{1}D^{o} - 3p {}^{1}F$	2–3
<u>m</u>	665.6	I ₂	664	${ m B}~^{3}\Pi_{0+u} - { m X}~^{1}\Sigma_{g}^{+}$	(5,6)
<u>n</u>	671.3	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)
		Li	670	$2p^{2}P^{o} - 2s^{2}S$	3/2 - 1/2; 1/2 - 1/2
<u>0</u>	685.1	H ₂ O	632-683	ro-vib. mode	(1,1,3) - (1,5,1)

Data S1: Basefunctions of various temperature dependent transitions extracted from PGOPHER showing A) AlO BX transition, B) AlO CX transition, C) AlO DX transition, D) IO, E) I₂

References

[1] G.L. Rizzo, S. Biswas, I. Antonov, K.K. Miller, M.L. Pantoya, R.I. Kaiser, Exotic Inverse Kinetic Isotopic Effect in the Thermal Decomposition of Levitated Aluminum Iodate Hexahydrate Particles. *J. Phys. Chem. Lett.* **2023**, *14*, 2722–2730.