Supplementary Information

Abiotic Formation of Alkylsulfonic Acids in Interstellar Analog Ices and Implications for their Detection on Ryugu

Mason McAnally^{1,2}, Jana Bocková³, Ashanie Herath^{1,2}, Andrew M. Turner^{1,2}, Cornelia Meinert^{3*}, Ralf I. Kaiser^{1,2*}

¹Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 ²W.M. Keck Laboratory in Astrochemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 ³Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS, 06108 Nice, France *Corresponding authors: <u>Cornelia.MEINERT@univ-cotedazur.fr, ralfk@hawaii.edu</u>.

Supplementary Note 1

Two additional absorptions were assigned to carbon disulfide (CS₂), i.e., the asymmetric stretch (v_3) at 1520 cm⁻¹ and the $v_1 + v_3$ combination mode at 2166 cm⁻¹¹. The presence of carbonyl sulfide (OCS) is supported by the fundamental v_1 at 2042 cm⁻¹¹. Finally, ethane (C₂H₆) was assigned via the v_5 fundamental at 2882 cm⁻¹, the v_{10} mode at 2977 cm⁻¹, the v_{11} at 1465 cm⁻¹, and the $v_8 + v_{11}$ combination band at 2941 cm^{-1 2-4}.

Isotopic shifting allowed for confirmation of small molecules, e.g., v_3 of CS₂ was observed at 1521 cm⁻¹ in the non-labeled experiment, while a new peak at 1460 cm⁻¹ appears in the SO₂/¹³CH₄ ice consistent with ¹³CS₂¹. Consequently, since CS₂ contains no hydrogen, no shifting is detected in the SO₂/CD₄ experiment for CS₂.

Supplementary Note 2

Changes in the infrared spectra during irradiation were kinetically fit to provide insight into formation mechanisms initiated by energetic electrons⁵. The column densities (molecules cm⁻²) of the reactants and products were determined utilizing a modified Beer-Lambert equation⁶ and the corresponding integrated absorption coefficients (Supplemntary Table 12) during the irradiation (Fig. 5). The changes in column density of each reactant and product are summarized in Supplemntary Table 13 and the kinetic scheme utilized in these fits are cataloged in Supplemntary Table 14 as well as rate constants for each reaction in each dose.

A set of coupled differential equations were solved numerically under the assumption that the reactions followed elementary first and second-order growth and decay profiles. By combining first-order decay and second-order decay reactions, the column density of SO₂ was fit during irradiation.

The column density of sulfur dioxide (v_3 , 1330 cm⁻¹) declines during irradiation, with the high dose experiment showing an 85% reduction in column density (-1.6×10^{17} molecules cm⁻²)— over five times larger than the low dose experiment (-2.9×10^{16} molecules cm⁻²). The 1000 nA and 5000 nA experiments also included the reformation of SO₂ via radical-radical recombination of SO and atomic oxygen. The rate constant of the decomposition of SO₂ to SO and atomic oxygen is markedly higher in the 5000 nA experiment (5.3×10^{-5} s⁻¹) compared to the 100 nA experiment

 $(5.7 \times 10^{-6} \text{ s}^{-1})$. The reduction in column density of methane—tracked by v_2 at 1300 cm⁻¹—during the irradiation occurs in all three dose experiments, and the most substantial change appears in the high dose experiment where the column density changes from 1.9×10^{17} molecules cm⁻² to 4.3×10^{16} molecules cm⁻². Utilizing a similar scheme to SO₂, the decay of methane was fit along with an additional second-order decay to form unknown products in the 5000 nA experiment. This decrease in column density of methane coincides with an increase in the column density of the methyl radical (v_3 , 3160 cm⁻¹) in the low dose experiment and the production of ethane (v_{10} , 2976 cm⁻¹) in the low, medium, and high dose experiments. The methyl radical is consumed predominately by radical-radical recombination to form ethane. The 5000 nA experiment shows the highest rate of ethane production of 2.8×10^{-17} cm² molecules⁻¹ s⁻¹.

Since the 100 nA experiment provides identification of the methyl radical, the kinetic scheme was first fit utilizing these data. The formation of known intermediates such as SO3 and the methyl radical reveals a possible pathway towards forming alkylsulfonic acids (ASAs). Sulfur trioxidecontains two second-order growths: the addition of atomic oxygen to SO₂ and a biomolecular reaction of SO₂ producing SO and SO₃. Two decay reactions are derived from the kinetic scheme. The first is a first-order decay towards unknown products. In the second, SO₃ reacts with the methyl radical to form CH₃SO₃. This reaction shows an order of magnitude increase between the 100 nA and 1000 nA experiments and between the 1000 nA and 5000 nA experiments. Previous computational work has described this reaction (Supplemntary Figure 8), where CH₃SO₃ initially goes through a van der Waals complex before a 1 kJ mol⁻¹ barrier transition state⁷. Matrix effects and suprathermal reactants may allow the crossing of this minor barrier. After forming CH₃SO₃, hydrogen addition produces methylsulfonic acid. Since the band strengths of ASAs are unknown, the fits were completed by estimating the S=O stretching strength which was 5.0×10^{-17} cm molecule⁻¹ before normalizing the fit to experimental data. This kinetic scheme accurately predicts the delay in the production of methylsulfonic acid (MSA) in the 100 nA experiment and the more rapid productions observed in the 1000 nA and 5000 nA experiments. Additionally, the rates derived for hydrogen addition to CH₃SO₃ show an increase from 1.2×10^{-19} cm² molecules⁻¹ s⁻¹ in the 100 nA experiment to 9.0×10^{-18} cm² molecules⁻¹ s⁻¹, i.e., a 75 times increase in reaction rate.

This kinetic scheme represents one of the first attempts at understanding the production of organosulfur compounds in interstellar analog ices. This scheme provides insight into possible formation mechanisms of ASAs in SO₂/CH₄ ices and produces reaction rates applicable to interstellar icy mantles. Here, the synthesis of methylsulfonic acid occurs through methyl radical addition to sulfur trioxide before hydrogen addition to form MSA.

Supplementary Note 3

Changes in the infrared spectra collected during TPD (Supplemntary Figure 7) can reveal the sublimation temperature of compounds as well as thermal reactions. The TPD profiles indicate a decrease in column density starting at 30 K for methane and ethane, while SO₂ and SO₃ decrease at 110 K. The peak at 1200 cm⁻¹ assigned to S=O stretching associated with compounds such as ASAs shows a decrease in signal at 250 K during the TPD in the low and medium dose experiments. The high dose experiment shows two increases in intensity starting at 150 K and 210 K and two decreases in signal at 170 K and 300 K. The changes in intensity in the high dose experiment suggest thermal reactions may play a notable role in the chemistry of these sulfur-containing ices and could contribute to the formation of ASAs.

Supplementary Figure 1. Infrared spectra of SO₂/CH₄ ice at 10 K before irradiation. The original spectrum (gray) is deconvoluted showing peaks associated with reagents (green). These deconvolution peaks sum to the peak fitted spectrum (red dashed).

Supplementary Figure 2. Infrared spectra of $SO_2/^{13}CH_4$ ice at 10 K after irradiation (top) and at 320 K (bottom). The original spectrum (gray) is deconvoluted showing peaks associated with reagents (green), peaks associated with alkylsulfonic acids (orange) and other irradiation products (blue). These deconvolution peaks sum to the peak fitted spectrum (red dashed). Peak positions and assignments for after irradiation can be found in Supplementary Table 7 and for the residue in Supplementary Table 8.

Supplementary Figure 3. Infrared spectra of SO₂/CD₄ ice at 10 K after irradiation (top) and at 320 K (bottom). The original spectrum (gray) is deconvoluted showing peaks associated with reagents (green), peaks associated with alkylsulfonic acids (orange) and other irradiation products (blue). These deconvolution peaks sum to the peak fitted spectrum (red dashed). Peak positions and assignments for after irradiation can be found in Supplementary Table 9 and for the residue in Supplementary Table 10.

Supplementary Figure 4. Infrared spectra of SO₂/H₂O/CH₄ ice at 10 K before irradiation. The original spectrum (gray) is deconvoluted showing peaks associated with reagents (green). These deconvolution peaks sum to the peak fitted spectrum (red dashed).

Supplementary Figure 5. FTIR spectra of $SO_2/H_2O/CH_4$ ices at 10 K after irradiation for 1 hour at (A) 100 nA, (B) 1000 nA, and (C) 5000 nA current. The original spectrum (gray) is deconvoluted showing peaks associated with reagents (green), functional groups associated with alkylsulfonic acids (orange), and new irradiation products (blue). These deconvolutions sum to the peak fitted spectrum (red dashed). The data to the right of the dashed vertical line at 2000 cm⁻¹ is magnified for clarity.

Supplementary Figure 6. FTIR spectra of $SO_2/H_2O/CH_4$ ices at 320 K after irradiation for 1 hour at (A) 100 nA, (B) 1000 nA, and (C) 5000 nA current. The original spectrum (gray) is deconvoluted showing functional groups associated with alkylsulfonic acids (orange), and new irradiation products (blue). These deconvolutions sum to the peak fitted spectrum (red dashed).

Supplementary Figure 7. Temporal evolution of selected infrared peaks during TPD in the SO₂/CH₄ experiments. The TPD profiles of selected infrared peaks of the low (left), medium (center), and high (right) dose. Methane, sulfur dioxide, ethane, sulfur trioxide, and v(S=O) were tracked by the 1300 cm⁻¹, 1330 cm⁻¹, 2976 cm⁻¹, 1380 cm⁻¹, and 1200 cm⁻¹ peaks, respectively. Error bars are calculated from instrumental noise and error in ice thickness measurements.

Peaks before irradiation (10 K)						
Position (cm ⁻¹)	Identity	References				
4533	$v_2 + v_3 \text{ CH}_4$	2				
4332	$v_3 + v_4 \text{ CH}_4$	2				
4311, 4303	$v_3 + v_4 \operatorname{CH}_4$	2				
4207	$v_1 + v_4 \text{ CH}_4$	2				
3077	$v_3 + v_L \ CH_4$	2				
3014, 3012, 3008	<i>v</i> ₃ CH ₄	2				
2906	$v_1 \operatorname{CH}_4$	2				
2818	<i>v</i> ₂ + <i>v</i> ₄ CH ₄	2				
2476	$2v_1$ SO ₂	8				
1346, 1343, 1338, 1322	$v_3 \operatorname{SO}_2$	8				
1306, 1301	v4 CH4	2				
1151	v_1 SO ₂	8				
524	v_2 SO ₂	8				

Supplementary Table 1. Infrared absorption assignments for SO₂/CH₄ ices before irradiation.

Note. "L" is used to define the lattice vibration

	Peaks after irradiation (10 K)							
Position (cm ⁻¹)	Assignment	Dose (nA)	References	Position (cm ⁻¹)	Assignment	Dose (nA)	References	
4533	v ₂ +v ₃ (CH ₄)	100	2	2115	<i>v</i> (OH)	1000	9	
4306	v3+v4 (CH4)	100, 1000, 5000	2	2087	v(C≡C)	5000	9	
4206	$v_1 + v_4$ (CH ₄)	100, 1000, 5000	2	2037, 2042	<i>v</i> ₁ (OCS)	1000, 5000	1	
3849	<i>v</i> (OH)	100	9	1711, 1719	v(C=O)	100, 1000, 5000	9	
3730, 3701	$v_1 + v_3$ (CO ₂)	100, 1000, 5000	10	1695, 1689	v(C=O)	1000, 5000	9	
3514–3629	<i>v</i> (OH)	100, 1000, 5000	9	1668	v(C=O)	5000	9	
3399–3456	<i>v</i> (OH)	100, 1000, 5000	9	1619	v(C=O)	100	9	
3207-3251	<i>v</i> (OH)	100, 1000, 5000	9	1521	<i>v</i> ₃ (CS ₂)	5000	1	
3100, 3092	<i>v</i> (OH)	1000, 5000	9	1496	$v(C=C), \delta(CH)$	1000, 5000	9	
3049, 3069	<i>v</i> (OH)	100, 5000	9	1464, 1469	δ (CH), v_{11} C ₂ H ₆	1000, 5000	2,9	
3025	<i>v</i> (CH)	1000	9	1434	$\delta(CH)$	5000	9	
3008, 3010, 3018	v3 CH4	100, 1000, 5000	2	1396, 1382	v3 (SO3)	100, 5000	1	
2978	v10 (C2H6)	100, 1000, 5000	2	1330	<i>v</i> ₃ (SO ₂)	100, 1000, 5000	8	
2971	<i>v</i> (OH)	1000	9	1303	v4 (CH4)	100, 1000, 5000	2	
2941	$v_8 + v_{11}$ (C ₂ H ₆)	100, 1000, 5000	2	1270	v(S=O)	5000	9	
2931, 2934	<i>v</i> (CH)	100, 5000	9	1241	v(S=O) SA	1000	11	
2905	v1 CH4	100	2	1210	v(S=O) ASA, SA	1000, 5000	9,11-13	
2899	v(SO-H) ASA	5000	9,12,13	1166, 1177	v(S=O)	100, 5000	9	
2882	v5 (C2H6)	100, 1000, 5000	2	1149	v_1 SO ₂	100, 1000, 5000	8	
2825	<i>v</i> (CH)	5000	9	1119	δ (SOH) ASA, SA	5000	9,11-13	
2818	$v_2 + v_4$ (CH ₄)	100, 1000, 5000	2	1100, 1103	v(S=O)	5000	9	
2743, 2699	<i>v</i> (OH)	1000, 5000	9	1046, 1050	v(SO)	1000, 5000	9	
2523-2588	v(SO-H) ASA	1000, 5000	9,12,13	961, 996	ρ (CH) ASA,	1000	9,11-13	
2476	v(C≡C)	100	9	887, 876	v(SO) SA $v(SO), \rho(CH)$	1000	9,11	
2409, 2447, 2437	<i>v</i> (OH)	1000, 5000	9	724, 786	v(CS) ASA	1000, 5000	9,12,13	
2367	v(C≡C)	1000, 5000	9	679	OH Torsion	5000	9	
2335, 2347, 2342	v ₃ (CO ₂)	100, 1000, 5000	10	668	v ₂ (CO ₂)	100, 1000, 5000	10	
2276	v(C≡C)	1000	9	653, 656	$\delta(\mathrm{OH})$ alcohols	1000, 5000	9	
2259, 2261	v(OH) acid	1000, 5000	9,11	577, 590	$\delta(SO)$	1000, 5000	9	
2234, 2237	v(C≡C)	100, 5000	9	526	v_2 (SO ₂)	100, 1000	8	
2166	$v_1 + v_3$ (CS ₂)	5000	1					
2138	<i>v</i> ₁ (CO)	100, 1000, 5000	1					

Supplementary Table 2. Infrared absorption assignments for SO₂/CH₄ experiments.

Note δ and ρ are used to describe the bending and rocking vibrational modes, respectively.

	Residue (320 K)		
Position (cm^{-1})	Assignment	Dose (nA)	References
3410	<i>v</i> (OH)	100	9
3213, 3233, 3246	<i>v</i> (OH)	100, 1000, 5000	9
3073, 3056	<i>v</i> (OH)	1000, 5000	9
2845	v(SO-H) ASA	5000	9,11
2426	v(SO-H) ASA	1000	9
2377	v(C≡C)	5000	9
2323	v(C≡C)	1000, 5000	9
1725, 1730	v(C=O)	100, 5000	9
1700, 1695	v(C=O)	1000, 5000	9
1618, 1613	v(C=O)	100, 5000	9
1520, 1510, 1511	CH ₂ scissoring, v(C=C)	100, 1000, 5000	9
1416, 1440	δ (CH) ASA	1000, 5000	9,12,13
1297	v(S=O) ASA	1000, 5000	9,12,13
1268	δ (OH) SA, ν (S=O) ASA	100, 5000	9
1186	v(S=O) ASA, SA	1000	9,11-13
1116	δ (SOH) ASA, SA	5000	9,11-13
1045	v(CO)	1000, 5000	9
1023	v(CO)	5000	9
909, 864	ρ (CH) ASA, ν (SO) SA	100, 5000	9,11-13
771	v(CS) ASA	1000, 5000	9,12,13
647, 621	$\delta(OH)$ alcohols	100, 5000	9

Supplementary Table 3. Infrared absorption assignments for SO₂/CH₄ experiments.

Infrared absorption assignments for SO₂/CH₄ experiments

Peaks after irradiation (10 K)							
Position (cm ⁻¹)	Assignment	References	Position (cm ⁻¹) Assignment	References		
4515	$v_2 + v_3^{13} \text{CH}_4$	2	1679	$v(^{13}C=O)$	9		
4281	$v_3 + v_4^{13} CH_4$	2	1659	$v(^{13}C=O)$	9		
4192	$v_1 + v_4^{13} CH_4$	2	1658	$v(^{13}C=O)$	9		
3513	<i>v</i> (OH)	9	1592	$v(^{13}C=O)$	9		
3380	<i>v</i> (OH)	9	1530	$v(^{13}C=O)$	9		
3214	v(OH)	9	1513	$v(^{13}C=O)$	9		
3119	<i>v</i> (OH)	9	1496	$v(^{13}C=^{13}C), \delta(^{13}CH)$	9		
3078	<i>v</i> (OH)	9	1474	δ(¹³ CH)	9		
3000	v_3^{13} CH ₄	2	1460	$v_3 ({}^{13}CS_2)$	1		
2965	$v_{10}^{13}C_{2}H_{6}$	2	1433	$\delta(^{13}CH)$	9		
2963	v(OH)	9	1365	$\delta(^{13}\mathrm{CH}_3)\mathrm{ASA}$	9,12,13		
2952	$v(^{13}CH)$	9	1335	$v_3 SO_2$	8		
2933	$v_8 + v_{11}^{13}C_2H_6$	2	1309	v(S=O)	9		
2913	$v(^{13}CH)$	9	1292	v_4^{13} CH ₄	2		
2901	v_1^{13} CH ₄	2	1255	$v(S=O)$ SA, $\delta(SOH)$	11		
2874	$v_5^{13}C_2H_6$	2	1217	v(S=O) ASA, SA	9,11-13		
2815	$v(^{13}CH)$	9	1166	v(S=O)	9		
2805	$v_2 + v_4^{13} CH_4$	2	1149	v_1 SO ₂	8		
2716	<i>v</i> (OH)	9	1050	v(SO)	9		
2659	$v(^{13}CH)$	9	1019	$v(^{13}CO)$	9		
2631	$v(^{13}CH)$	9	952	$\rho(CH_3)$ ASA, $v(SO)$	9,11-13		
2576	$2v_4^{13}$ CH ₄	2	820	$\nu(SO), \rho(CH)$	9		
2547	v(SO-H) ASA	9,12,13	633	$v_2^{13}CO_2$	10		
2544	v(SO-H) ASA	9,12,13	591	δ(SO) ASA	9,12,13		
2273	$v_3^{13}CO_2$	10	520	$v_2 SO_2$	8		
2256	$v_3^{13}CO_2$	10					
2238	$v(^{13}C\equiv^{13}C)$	9					
2089	$v_1 (^{13}CO)$	10					
2070	$v(^{13}C \equiv^{13}C)$	9					
1988	$v_1 (O^{13}CS)$	1					

Supplementary Table 4. Infrared absorption assignments for $SO_2/^{13}CH_4$.

	Residue (320 K)	
Position (cm ⁻¹)	Assignment	References
3367	<i>v</i> (OH)	9
3204	<i>v</i> (OH)	9
2967	$v(^{13}CH)$	9
2952	$v(^{13}CH)$	9
2936	v(OH)	9
2923	$v(^{13}CH)$	9
2864	$v(^{13}CH)$	9
2728	v(OH)	9
2458	v(SO-H) ASA	9,12,13
2374	$v(^{13}C \equiv ^{13}C)$	9
1671	$v(^{13}C=O)$	9
1563	$v(^{13}C=O)$	9
1439	$\delta(^{13}\text{CH}_3)$ ASA	9,12,13
1351	δ (¹³ CH ₃) ASA	9,12,13
1287	v(S=O) ASA, SA	9,11-13
1152	δ (SOH) ASA, SA	9,11-13
1053	v(SO)	9
912	v(S–OH) ASA, SA	9,11-13
576	$\delta(SO_2)$ ASA	9,12,13

Supplementary Table 5. Infrared absorption assignments for $SO_2/^{13}CH_4$.

		Peaks after irr	adiation (10 K)		
Position (cm ⁻¹)	Assignment	References	Position (cm ⁻¹)	Assignment	References
3238	$v_3 + v_4 \text{ CD}_4$	14	1468	$\delta(\text{CD})$	9
3087	$v_1 + v_4 CD_4$	14	1334	$v_3 SO_2$	8
2992	$v_1 \text{CHD}_3$	15	1323	$v_3 SO_2$	8
2926	$3v_4$ CD ₄	14	1312	v(S=O) ASA	9,12,13
2618	v(OD)	9	1242	v(S=O) SA	11
2534	v(OD)	9	1185	v(S=O) ASA	9,12,13
2440	v(CD)	9	1148	$v_1 \operatorname{SO}_2$	8
2392	v(OD)	9	1089	δ (SOD) ASA, SA	9,11-13
2378	v(CD)	9	1049	$\nu(SO)$	9
2354	v(CD)	9	1001	v(CO)	9
2341	v(CD)	9	991	$v_4 \operatorname{CD}_4$	14
2337	$v_3 \operatorname{CO}_2$	10	940	ρ (CH) ASA, v (SO) SA	9,11-13
2318	v(CD)	9	568	$\delta(SO_2)$ ASA	9,12,13
2298	v(CD)	9	532	$v_2 \operatorname{SO}_2$	8
2274	v(CD)	9			
2250	$v_3 \mathrm{CD}_4$	14			
2236	$v_{10} C_2 D_6$	16			
2213	v(S-OD)	9			
2212	v(CD)	9			
2137	<i>v</i> ¹ (CO)	10			
2130	v(C≡C)	9			
2129	v(OD)	9			
2118	$v(C\equiv C)$	9			
2090	$v(C\equiv C)$	9			
2078	$v_5 C_2 D_6$	16			
2070	$v_2 + v_4 \text{ CD}_4$	14			
2035	v_1 (OCS)	1			
1977	$v(C\equiv C)$	9			
1854	$v_3 + v_6 C_2 D_6$	16			
1675	ν(C=O)	9			
1596	ν(C=O)	9			
1516	v_3 (CS ₂)	1			

Supplementary Table 6. Infrared absorption assignments for SO_2/CD_4 .

	Residue (320 K)	
Position (cm ⁻¹)	Assignment	References
2221	v(OD)	9
2068	v(OD)	9
1958	v(C≡C)	9
1831	v(C≡C)	9
1710	v(C=O)	9
1465	$\delta(\text{CD}_3)$ ASA	9,12,13
1314	v(S=O) ASA	9,12,13
1182	v(S=O) ASA, SA	9,11-13
991	v(S–OD) ASA, SA	9,11-13
911	<i>v</i> (CO)	9
570	$\delta(SO_2)$ ASA	9,12,13
210		, 12, 1 2

Supplementary Table 7. Infrared absorption assignments for SO_2/CD_4 .

Peaks before irradiation (10 K)						
Position (cm ⁻¹)	Identity	References				
4302	<i>v</i> ₃ + <i>v</i> ₄ CH ₄	2				
4203	v_1+v_4 CH ₄	2				
3662	OH Dangling H ₂ O	17				
3591	<i>v</i> ₁ (O) H ₂ O	17				
3446	<i>v</i> ₃ (L) H ₂ O	17				
3301	<i>v</i> ₃ (L) H ₂ O	17				
3218	<i>v3</i> (T) H ₂ O	17				
3142	<i>v</i> ₁ (T) H ₂ O	17				
3008	<i>v</i> ₃ CH ₄	2				
3001	<i>v1</i> (I) H ₂ O	17				
2902	<i>v</i> ¹ CH ₄	2				
2818	<i>v</i> ₂ + <i>v</i> ₄ CH ₄	2				
1659	v_2 H ₂ O	17				
1327	$v_3 \operatorname{SO}_2$	8				
1302	<i>v</i> 4 CH4	2				
1154	$v_1 \operatorname{SO}_2$	8				
600-960	$v_{\rm L}{\rm H_2O}$	17				
527	$v_2 \operatorname{SO}_2$	8				

Supplementary Table 8. Infrared absorption assignments for SO₂/H₂O/CH₄ ices before irradiation.

Peaks After Irradiation (10 K)							
Position (cm ⁻¹)	Assignment	Dose (nA)	References	Position (cm ⁻¹)	Assignment	Dose (nA)	References
4302	$v_3 + v_4 \operatorname{CH}_4$	100, 1000	2	1185	v(S=O) ASA, SA	100, 1000, 5000	9,11-13
4203	$v_1 + v_4 \text{ CH}_4$	100, 1000	2	1152	$v_1 \operatorname{SO}_2$	100, 1000	8
3593, 3603	OH Dangling	100, 1000	17	1109	δ (SOH) ASA	5000	9,12,13
3491, 3497,	$v_l(O) H_2O$	100, 1000, 5000	17	1051	v(SO)	1000, 5000	9
3406, 3408,	<i>v</i> ₃ (L) H ₂ O	100, 1000, 5000	17	1036	v(CO)	100	9
3299	<i>v</i> ₃ (L) H ₂ O	5000	17	1016, 1019	v(CO)	1000, 5000	9
3230, 3224	<i>v</i> ₃ (T) H ₂ O	100, 1000	17	868, 878, 877	$v_{\rm L}{\rm H_2O}$	100, 1000, 5000	17
3135, 3125,	$v_l(T)$ H ₂ O	100, 1000, 5000	17	790, 790, 779	$v_{\rm L}{\rm H_2O}$	100, 1000, 5000	17
3125	v(OH)	1000	9	668	v ₂ (CO ₂)	5000	10
3008	v3 CH4	100, 1000, 5000	2	652	$v_{\rm L}$ H ₂ O	5000	17
2996	v(SO-H) ASA	100, 5000	9,12,13				
2987	<i>v</i> (OH)	1000	9				
2976	v10 C2H6	1000	2				
2938	$v_8 + v_{11} C_2 H_6$	1000	2				
2903	<i>v</i> (CH)	100, 1000	9				
2882	v5 C2H6	1000	2				
2831	<i>v</i> (CH)	1000	9				
2817	v(OH) acid	100	9,11				
2815	<i>v</i> (CH)	1000	9				
2497, 2565	v(SO-H) ASA	1000, 5000	9,12,13				
2342	v ₃ (CO ₂)	1000, 5000	10				
2203	v(OH) acid	5000	9,11				
2189	v ₂ + v ₄ (CH ₄)	1000	2				
2137	$v_1 \operatorname{CO}$	1000, 5000	10				
1715	v(CO)	5000	9				
1676	$v_2 H_2 O$	100, 1000, 5000	17				
1606	v(C=O)	5000	9				
1486	$\delta(CH)$	5000	9				
1439	δ (CH) ASA	5000	9,12,13				
1329	<i>v</i> ₃ SO ₂	100, 1000, 5000	8				
1303	v4 CH4	100, 1000, 5000	2				
1274	δ (OH) SA	100	11				

Supplementary Table 9. Infrared absorption assignments for SO₂/H₂O/CH₄ experiments.

Residue (320 K)						
Position (cm^{-1})	Assignment	Dose (nA)	References			
3394, 3248	<i>v</i> (OH)	1000, 5000	9			
3217, 3111	<i>v</i> (OH)	1000, 5000	9			
2832	v(SO-H) ASA	5000	9,12,13			
2528	v(SO-H) ASA	5000	9,12,13			
2166	v(OH) acid	5000	9,11			
1459, 1440	δ (CH) ASA	100, 1000, 5000	9,12,13			
1320	v(S=O) ASA	100	9,12,13			
1270, 1282	δ (OH) SA	100, 1000, 5000	9			
1200	v(S=O) ASA, SA	100, 1000, 5000	9,11-13			
1125	δ (SOH) ASA	5000	9,12,13			
1036	v(CO)	5000	9			
963, 938	ρ (CH) ASA, v (SO) SA	100, 1000	9,11-13			
853	v(SO) ASA	5000	9,12,13			
798	v(CS) ASA	1000	9,12,13			

Supplementary Table 10. Infrared absorption assignments for SO₂/H₂O/CH₄ experiments.

Supplementary Table 11. Identified alkylsulfonic acids as tert-butyldimethylsilyl derivatives by GC×GC–TOF-MS in the SO₂/H₂O/CH₄ and SO₂/CH₄ ice mixtures along with concentration

estimates.

	$R_{t1}^{[a]}$	R _{t2} ^[b]			SO ₂ /H	H ₂ O/CH ₄ (nmol)	SC	P_2/CH_4 (nr	nol)
Compound	(min)	(sec)	[M] ^{+•}	[M-57] ^{+•}	Low Dose	Medium Dose	High Dose	Low Dose	Medium Dose	High Dose
Methylsulfonic acid CH ₃ SO ₂ (OH)	17.17	1.48	210	153	10 ⁻¹	10 ⁻¹	10 ⁻¹	5×10 ⁻¹	5×10 ⁻¹	5×10 ¹
Ethylsulfonic acid CH ₃ CH ₂ SO ₂ (OH)	19.00	1.23	224	167	5×10 ⁻²	5×10 ⁻²	5×10 ⁻²	5×10 ⁻²	5×10 ⁻²	5×10 ⁻¹
1-Propylsulfonic acid CH ₃ CH ₂ SO ₂ (OH)	20.92	1.19	238	181	n.d.	n.d.	10 ⁻³	n.d.	10 ⁻³	5×10 ⁻²
Sulfuric Acid (H ₂ SO ₄)	25.50	0.8	n.d.	269	n.d.	n.d.	10 ⁻¹	n.d.	10^{-1}	10 ¹

Note. n.d. is not detected

^a GC×GC retention time 1st dimension. ^b GC×GC retention time 2nd dimension.

Molecule	Position (cm ⁻¹)	A (cm molecule ⁻¹)	Reference
CH4	1303	9.71×10^{-18}	18
SO_2	1333	1.47×10^{-17}	19
C_2H_6	2976	2.2×10^{-17}	20
CH ₃	3160	2.88×10^{-18}	21
SO ₃	1385	3.0×10^{-17}	22
MSA	1200	$5.0 imes 10^{-17}$	estimated

Supplementary Table 12. Optical constants for small molecules tracked during irradiation and TPD in the infrared spectra.

MSA: methylsulfonic acid

	Change in column density (molecule cm ⁻²)					
Identity	Low Dose	Medium Dose	High Dose			
CH ₄	-6.1×10^{16}	-7.4×10^{16}	-1.5×10^{17}			
SO_2	-2.9×10^{16}	-1.3×10^{17}	-1.6×10^{17}			
C_2H_6	2.6×10^{15}	1.3×10^{16}	4.3×10^{15}			
SO_3	3.4×10^{15}	0.0	$7.0 imes 10^{15}$			
CH ₃	0.0	n.d.	n.d.			

Supplementary Table 13. Change in column density before and after irradiation of the SO₂/CH₄ ices.

Note n.d. is not detected.

Dose					
Reaction		100 nA	1000 nA	5000 nA	Units
SO ₂	\rightarrow SO + O(³ P/ ¹ D)	$5.7\ \pm 1.3\ \times 10^{-6}$	$6.8\ \pm 1.0\ \times 10^{-6}$	$5.3 \ \pm 1.1 \ \times 10^{-5}$	s^{-1}
$SO_2 + O(^{3}P/^{1}D)$	\rightarrow SO ₃	$8.2\ \pm 2.5\ \times 10^{-22}$	$2.0\ \pm 0.7\ \times 10^{-22}$	$3.65\pm 0.05\times 10^{-22}$	cm ² molecule ⁻¹ s ⁻¹
$[SO_2]_2$	\rightarrow SO + SO ₃	$1.3\ \pm 0.1\ \times 10^{-22}$	$7.0\ \pm 0.2\ \times 10^{-22}$	$4.0\ \pm 0.3\ \times 10^{-22}$	cm ² molecule ⁻¹ s ⁻¹
CH_4	\rightarrow CH ₃ + H(² S)	$1.0\ \pm 0.5\ \times 10^{-5}$	$2.3\ \pm 0.3\ \times 10^{-4}$	$9.5\ \pm 0.3\ \times 10^{-4}$	s^{-1}
$[CH_4]_2$	\rightarrow CH ₃ + CH ₃ + 2H/H ₂	$1.27\pm 0.05\times 10^{-23}$	$8.6\ \pm 2.1\ \times 10^{-22}$	$8.25\pm 0.07\times 10^{-22}$	cm ² molecule ⁻¹ s ⁻¹
$SO_3 + CH_3$	\rightarrow CH ₃ SO ₃	$7.2\ \pm 0.8\ \times 10^{-20}$	$7.2\ \pm 0.5\ \times 10^{-19}$	$6.0\ \pm 1.5\ \times 10^{-18}$	cm^2 molecule ⁻¹ s ⁻¹
$CH_3SO_3 + H$	\rightarrow CH ₃ SO ₂ (OH)	$1.2\ \pm 0.4\ \times 10^{-19}$	$7.5\ \pm 3.4\ \times 10^{-19}$	$9.0 \ \pm 1.4 \ \times 10^{-18}$	cm ² molecule ⁻¹ s ⁻¹
$CH_3 + CH_3$	$\rightarrow C_2H_6$	$8.1 \ \pm 0.2 \ \times 10^{-19}$	$5.6\ \pm 0.8\ \times 10^{-20}$	$2.8\ \pm 0.3\ \times 10^{-17}$	cm ² molecule ⁻¹ s ⁻¹
$CH_{3} + H(^{2}S)$	$\rightarrow CH_4$	-	$7.9\ \pm 0.5\ \times 10^{-20}$	$9.0\ \pm 3.5\ \times 10^{-18}$	cm ² molecule ⁻¹ s ⁻¹
$SO + O(^{3}P/^{1}D)$	$\rightarrow SO_2$	-	$2.5\ \pm 0.2\ \times 10^{-20}$	$2.5\ \pm 0.2\ \times 10^{-20}$	cm^2 molecule ⁻¹ s ⁻¹
CH ₃ SO ₂ (OH)	\rightarrow Products	-	$4.3\ \pm 0.6\ \times 10^{-20}$	$3.0\ \pm 0.2\ \times 10^{-4}$	cm ² molecule ⁻¹ s ⁻¹
CH ₃	\rightarrow Products	$5.9\ \pm 1.1\ \times 10^{-3}$	$5.9\ \pm 1.1\ \times 10^{-3}$	$5.9\ \pm 1.1\ \times 10^{-3}$	s^{-1}
SO_3	\rightarrow Products	$8.7\ \pm 0.3\ \times 10^{-4}$	$9.5\ \pm 2.0\ \times 10^{-3}$	$3.0 \ \pm 1.0 \ \times 10^{-3}$	s^{-1}
$[SO_2]_2$	\rightarrow Products	-	-	$2.65\pm 0.08\times 10^{-21}$	cm ² molecule ⁻¹ s ⁻¹
$[CH_4]_2$	\rightarrow Products	-	-	$1.7\pm 0.4 \times 10^{-21}$	cm^2 molecule ⁻¹ s ⁻¹
$C_2H_6 + SO$	\rightarrow Products	-	-	$2.5 \pm 0.3 \times 10^{-18}$	cm^2 molecule ⁻¹ s ⁻¹
SO	\rightarrow Products	-	-	$2.0\pm1.0\times10^{-3}$	s^{-1}

Supplementary Table 14. Rate constants derived from iterative fitting of reaction scheme.

Supplementary Figure 8. Calculated potential energy surfaces for SO₂ + CH₃ and SO₃ + CH₃. Radical addition of CH₃⁺ to SO₂ computed at the CCSD(T)/aug-cc-pV(Q+d)Z//CCSD(T)/6-311++G(2df, p) level (left) calculated by Ratliff et al.²³ and CH₃ addition to SO₃ computed at the G3XMP2//B3LYP/6-311+G(3df,2p) level of theory by Cao et al⁷.

Supplementary References

- 1 Maity, S. & Kaiser, R. I. Electron irradiation of carbon disulfide–oxygen ices: Toward the formation of sulfur-bearing molecules in interstellar ices. *Astrophys. J.* **773**, 184, (2013).
- 2 Bennett, C. J., Jamieson, C. S., Osamura, Y. & Kaiser, R. I. Laboratory studies on the irradiation of methane in interstellar, cometary, and solar system ices. *Astrophys. J.* **653**, 792, (2006).
- 3 Gerakines, P. A., Schutte, W. A. & Ehrenfreund, P. Ultraviolet processing of interstellar ice analogs. I. Pure ices. *Astron. Astrophys.* **312**, 289–305, (1996).
- 4 Hepp, M. & Herman, M. Weak combination bands in the 3-μm region of ethane. *I. Mol. Spectrosc.* **197**, 56-63, (1999).
- 5 Turner, A. M., Abplanalp, M. J., Blair, T. J., Dayuha, R. & Kaiser, R. I. An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments. *Astrophys. J. Suppl.* **234**, 6, (2018).
- 6 Turner, A. M. *et al.* A photoionization mass spectroscopic study on the formation of phosphanes in low temperature phosphine ices. *Phys. Chem. Chem. Phys.* **17**, 27281–27291, (2015).
- 7 Cao Jia, W. W.-l., Gao Lou-jun, Fu feng. Mechanism and Thermodynamic Properties of CH₃SO₃ Decomposition. *Acta Physico-Chimica Sinica* **29**, 1161–1167, (2013).
- 8 Moore, M. H. Studies of proton-irradiated SO₂ at low temperatures: Implications for lo. *Icarus* **59**, 114–128, (1984).
- 9 Socrates, G. Infrared and Raman Characteristic Group Frequencies. 3rd edn, (2004).
- 10 Gerakines, P. A., Schutte, W. A., Greenberg, J. M. & van Dishoeck, E. F. The infrared band strengths of H₂O, CO and CO₂ in laboratory simulations of astrophysical ice mixtures. *Astron. Astrophys.* **296**, 810, (1995).
- 11 Zhong, L. & Parker, S. F. Structure and vibrational spectroscopy of methanesulfonic acid. *Royal Soc. Open Sci.* **5**, 181363, (2018).
- 12 Durig, J. R., Zhou, L., Schwartz, T. & Gounev, T. Fourier transform Raman spectrum, vibrational assignment and ab initio calculation of methanesulfonic acid in the gas and liquid phases. *J. Raman Spectrosc.* **31**, 193–202, (2000).
- 13 Nash, K. L., Sully, K. J. & Horn, A. B. Observations on the interpretation and analysis of sulfuric acid hydrate infrared spectra. *J. Phys. Chem. A* **105**, 9422–9426, (2001).
- 14 Calvani, P., Lupi, S. & Maselli, P. The infrared spectrum of solid CD₄. J. Chem. Phys. **91**, 6737–6742, (1989).
- 15 He, J., Gao, K., Vidali, G., Bennett, C. J. & Kaiser, R. I. Formation of molecular hydrogen from methane ice. *Astrophys. J.* **721**, 1656, (2010).
- 16 Abplanalp, M. J. & Kaiser, R. I. Complex hydrocarbon chemistry in interstellar and solar system ices revealed: A combined infrared spectroscopy and reflectron time-of-flight mass spectrometry analysis of ethane (C₂H₆) and d6-ethane (C₂D₆) ices exposed to ionizing radiation. *Astrophys. J.* **827**, 132, (2016).
- 17 Hagen, W., Tielens, A. & Greenberg, J. The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K. *Chem. Phys.* **56**, 367–379, (1981).
- 18 Gerakines, P. A. & Hudson, R. L. Infrared spectra and optical constants of elusive amorphous methane. *Astrophys. J. Lett.* **805**, L20, (2015).
- 19 Garozzo, M., Fulvio, D., Gomis, O., Palumbo, M. E. & Strazzulla, G. H-implantation in SO₂ and CO₂ ices. *Planet. Space Sci.* **56**, 1300–1308, (2008).

- 20 Hudson, R. L., Gerakines, P. A. & Moore, M. H. Infrared spectra and optical constants of astronomical ices: II. Ethane and ethylene. *Icarus* **243**, 148–157, (2014).
- 21 Snelson, A. Infrared matrix isolation spectrum of the methyl radical produced by pyrolysis of methyl iodide and dimethyl mercury. *J. Phys. Chem.* **74**, 537–544, (1970).
- 22 Garozzo, M., Fulvio, D., Kanuchova, Z., Palumbo, M. E. & Strazzulla, G. The fate of Sbearing species after ion irradiation of interstellar icy grain mantles. *A&A* **509**, A67, (2010).
- Ratliff, B. J., Tang, X., Butler, L. J., Szpunar, D. E. & Lau, K.-C. Determining the CH₃SO₂
 → CH₃+SO₂ barrier from methylsulfonyl chloride photodissociation at 193 nm using velocity map imaging. J. Chem. Phys. 131, 044304, (2009).