

Supplementary Information for

Low-Temperature Gas-Phase Formation of Cyclopentadiene and Its Role in the Formation of Aromatics in the Interstellar Medium

Zhenghai Yang^a, Iakov A. Medvedkov^a, Shane J. Goettl^a, Anatoliy A. Nikolayev^b, Alexander M.

Mebel^c, Xiaohu Li^{d,e*}, Ralf I. Kaiser^{a*}

^aDepartment of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
^bSamara National Research University, Samara 443086, Russia
^cDepartment of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
^dXinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
^eKey Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China

Correspondence to: Prof. Dr. Ralf I. Kaiser: ralfk@hawaii.edu and Prof. Dr. Xiaohu Li:

xiaohu.li@xao.ac.cn

This file includes:

Supplementary Note 1-3 Figures S1 to S6 Tables S1 to S6

Supplementary Note 1: Alternative pathways in the CH + C₄H₆ reaction.

Multiple pathways to **p1** can be accessed from three-membered cyclic complex(es) **i9** or **i10**, namely, 1) isomerization from both **i9** and **i10** to five-membered cyclic intermediate **i16**; 2) formation of four-membered cyclic **i12** from **i9** through ring expansion and a barrier of 232 kJ mol⁻¹ above **i12**; 3) ring-opening to **i15** from **i10**. These pathways to **p1** initiated from **i7** are less competitive considering the high barriers. Three pathways are also revealed in Fig. 4 to the higher energy C₅H₆ isomers **p2** and **p3**, i.e., hydrogen elimination from the CH₂ group of the cyclic CHCHCH₂ moieties of **i5**, **i6**, or **i11** proceeding via exit transition states located 5-18 kJ mol⁻¹ above the separated products of **p2** + H and **p3** + H (**i5** \rightarrow **p2** + H, **i6** \rightarrow **p3** + H, and **i11** \rightarrow **p3** + H). However, these three pathways involve high barriers of more than 200 kJ mol⁻¹ (205-217 kJ mol⁻¹) and thus are less favorable than the formation of **p1**. More energetically less preferred pathways to **p1** - **p3** including additional intermediates (**i17-i30**) and transition states are depicted in Figure S1.

As shown in Figure S1, the initial complex il can undergo isomerization to il7 via a submerged barrier of 71 kJ mol⁻¹ below the separated reactants prior to cyclization (to a five-membered ring i21) and hydrogen shift forming i16. The initial insertion intermediates i2 or i3 can directly isomerize to i23 or i26, two conformers which are connected through rotational transition state lying only 6 kJ mol⁻¹ above i26. Three-membered ring opening accompanied with hydrogen migration in i6 lead to i18 which initiates a multi-step isomerization pathway to i26 involving series of acyclic intermediates (i19, i20, i22, i24-i26) connected by rotational isomerization and hydrogen migrations pathways (i19-i20, i19-i22, i20-i22, i22-i24, i24-i25, and i25-i26). However, the high barriers of more than 300 kJ mol⁻¹ (326 kJ mol⁻¹ i25-i26, 404 kJ mol⁻¹ i2-i23, 424 kJ mol⁻¹ ¹ i3-i26) hinder these pathways. i26 can easily isomerize to i27 followed by a ring closure producing i30 which can proceed either via a rearrangement involving a barrier of 150 kJ mol⁻¹ to i16 or via a H loss from the CH₂ group to p1 over a tight exit transition state of 15 kJ mol⁻¹. As for the pathways to p2-p3, a hydrogen shift-hydrogen elimination pathway ($i7 \rightarrow i29 \rightarrow p3 + H$) as well as a cyclization-hydrogen elimination ($i25 \rightarrow i28 \rightarrow p2 + H$) pathway are also identified, in which i28 and i29 can easily interconvert considering that a barrier of only 17 kJ mol⁻¹ separates them. Noted that the barriers for the formation of i28 or i29 exceed 200 kJ mol⁻¹ (i19 \rightarrow i22 225 kJ mol⁻¹, i7 \rightarrow i29 206 kJ mol⁻¹), which hinders the formation of p2-p3.

Supplementary Note 2: Comparison of the contributions of the channels to cyclopentadiene.

Based on the analysis of the full PES of the 1,3-butadiene + methylidyne reaction we can unambiguously distinguish 9 main exit channels starting from intermediates i3, i21, i30, i6, i7, i9, i10, and i14, which all lead to 1,3-cyclopentadiene. Except for i16, there are also two other fivemembered cyclic compounds i21 and i30 (Figure S1) that have the cyclopentadiene skeleton, but it should be noted that the pathways involving them are not important as shown in Table S3. RRKM calculations predict that the $i3 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$ is channel the most favorable for the formation of **p1** regardless of the initial intermediates. Its yield is nearly 100% if the reaction begins from i1, i2, or i3. This is attributed to the facts that i1 is metastable and spontaneously collapses to i3 is below than *i1* itself indicating that that rotational isomerizations $i2 \rightarrow i3 \rightarrow i15$ (are more than several orders of magnitude faster than their 3-membered cyclic closures to i4 and i5 and the four-membered ring closure of i3 to i12. Alternatively, the i7 \rightarrow i15 \rightarrow i16 \rightarrow p1 channel makes a quarter of the total contribution to the formation of **p1** of **i4/i5** serve as the initial adducts. This is because the barriers for $i4 \rightarrow i3$ and $i5 \rightarrow i2$ (67 and 65 kJ mol⁻¹) are comparable with that for $i7 \rightarrow i15$ (57 kJ mol⁻¹), which results in similar rate constants, 3.26E+11 s⁻¹ ($i4 \rightarrow i3$), 4.11E+11 s⁻¹ (i5 \rightarrow i2), and 4.08E+11 s⁻¹ (i7 \rightarrow i15). Two other exit channels i14 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H and $i10 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$ are insignificant due to very high barriers, as their rate constants are orders of magnitude lower than those for the ring opening in the three-membered cyclic isomers i4, i5, and i7. The last two pathways $i10 \rightarrow i16 \rightarrow p1 + H$ and $i9 \rightarrow i16 \rightarrow p1 + H$ involving the three-membered ring expansion of i9 or i10 into the five-membered ring of i16 require even higher barriers to be overcome and are therefore negligible.

To summarize, according to the RRKM calculations the most prevailing channels include the following:

- 1) $(i1/i2 \rightarrow) i3 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$
- 2) $i4 \rightarrow (i5 \rightarrow i2 \rightarrow) i3 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$
- 3) $i5 \rightarrow i4/i2 \rightarrow i3 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$
- 4) $(i4 \rightarrow) i5 \rightarrow i6 \rightarrow i7 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$

Supplementary Note 3: Astrochemical modeling results.

The rate coefficients of the reactions included in the modeling are mainly derived from the published results. For example, under low-temperature conditions, the rate coefficients for the reaction of methylidyne (CH) with 1,3-butadiene (C₄H₆) is predicted to be around 4×10^{-10} cm³ molecule⁻¹ s⁻¹ (1, 2), the rate coefficients of CH with other C1, C2, C4 hydrocarbons, and benzene are measured to be $(3-5) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ (3-6). As depicted in Fig. 6A, the predictive capabilities of the astrochemical model can be benchmarked for cyclopentadiene (C5H6), cyanocyclopentadiene (C5H5CN), and ethynylcyclopentadiene (C5H5CCH), with predicted peak abundances of $(8.1 \pm 0.4) \times 10^{-10}$ at 8.0×10^4 years, $(10.2 \pm 0.5) \times 10^{-11}$ at 3.2×10^5 years, and (2.5) ± 0.2) $\times 10^{-10}$ at 3.2 $\times 10^{5}$ years, respectively; these predictions agree well with the astronomically detected fractional abundance of $(8 - 16) \times 10^{-10}$ ((7, 8)), $(5 - 16) \times 10^{-11}$ ((8-11)), and $(2 - 5) \times 10^{-10}$ 10^{-10} ((9)) relative to molecular hydrogen. This model reveals that the main pathways to cvanocvclopentadiene (C5H5CN) include the CH - C4H5CN and CN - C5H6; fundamental pathways to ethynylcyclopentadiene (C5H5CCH) are C2H - C5H6 and CH - C4H5CCH. Considering bicyclic aromatics carrying a five-membered ring (Fig. 6B), abundances of indene (C₉H₈) and cyanoindene (C₉H₇CN) are predicted to be $(9.0 \pm 0.4) \times 10^{-10}$ at 2.5 × 10⁵ years and $(1.1 \pm 0.2) \times 10^{-11}$ at 3.2×10^5 years, while astronomical observations suggest fractional abundances of $(8 - 14) \times 10^{-10}$ and $(1 - 3) \times 10^{-11}$ ((10, 12)), respectively. As for the cyano (CN) and ethynyl (CCH) substituted benzene and naphthalene molecules (Fig. 6C-D), modeling predictions of peak abundances of cyanobenzene (C₆H₅CN), ethynylbenzene (C₆H₅CCH), and cvanonaphthalene (C₁₀H₇CN) are reported to $(4.2 \pm 0.5) \times 10^{-11}$, $(2.2 \pm 0.3) \times 10^{-10}$, and (6.0 ± 0.5) \times 10⁻¹¹ thus replicating the astronomical observations nicely ((4 - 20) \times 10⁻¹¹ for C₆H₅CN (9, 13, 14), $((2-3) \times 10^{-10} \text{ for C}_6\text{H}_5\text{CCH}(9), (5-20) \times 10^{-11} \text{ for C}_{10}\text{H}_7\text{CN} (10, 15))$. The peak fractional abundances of the molecular building blocks and hence precursors of the cyclic compounds, i.e. propargyl (C₃H₃), vinylacetylene (C₄H₄), cyanoacetylene (HCCCN), vinyl cyanide (C₂H₃CN), and cyano substituted propylene isomers (C₃H₅CN), are also included in the model. These results are close to the observed data of $(8 - 12) \times 10^{-9} ((16, 17)), (1 - 2) \times 10^{-9} ((7, 18)), (2 - 20) \times 10^{-9} ((19, 17)), (1 - 2) \times 10^{-9} ((1 - 2) \times 10^{-9}), (1 - 2) \times 10^{-9})$ 20)), $(5-8) \times 10^{-10}$ ((18, 21)), and $(3-5) \times 10^{-11}$ (Figure S5-6) thus highlighting the predictive nature of our astrochemical model (Table S6) (22). Note that benzene (C6H6) and naphthalene $(C_{10}H_8)$ are nonpolar and hence cannot be detected via radioastronomical techniques. Nevertheless,

the detected rich abundances of PAHs in TMC-1 indicate that benzene and naphthalene represent an 'invisible' reservoir reacting rapidly with cyano (CN) and ethynyl (CCH) radicals to their substituted proxies (23, 24). Here, peak fractional abundances of benzene and naphthalene are predicted to be $(7.5 \pm 0.3) \times 10^{-9}$ and $(4.8 \pm 0.5) \times 10^{-8}$, which are about one to three magnitudes higher than their CN/CCH derivatives.

Figure S1. Supplementary PES. Additional pathways to cyclopentadiene (p1), trans- (p2) and cis-3-vinyl-cyclopropene (p3) for the reaction of methylidyne (CH) with 1,3-butadiene (C_4H_6).

Figure S2. PES of reaction of CD with C₄H₆. Pathways to p1, p2, and p3 for the reaction of d1-methylidyne (CD) with 1,3-butadiene (C4H₆).

Figure S3. Computed geometries of the exit transition states leading to p1. The computed geometries of exit transition states of $i16 \rightarrow p1 + H$ and $i30 \rightarrow p1 + H$.

Figure S4. **Previously incomplete reaction network.** The main reactions leading to naphthalene ($C_{10}H_8$) and cyanonaphthalene ($C_{10}H_7CN$) molecules in the previous reaction network. The network derived in the presente work is shown as Figure 5 in the manuscript.

Figure S5. Fractional abundances of small molecules derived from the new astrochemical modeling (II). The fractional abundances of the vinylacetylene (C₄H₄), the cyano and ethynyl substitured 1,3-butadiene namely C₄H₅CN, and C₄H₅CCH are plotted as a function of time. The astronomically observed fractional abundances along with the uncertanities are visualized by the horizontal bars.

Figure S6. Fractional abundances of small molecules derived from the new astrochemical modeling (III). The fractional abundances of the cyanoacetylene (HCCCN), vinylcyanide (C_2H_3CN), and cyano substituted propylene (C_3H_5CN) are plotted as a function of time. The astronomically observed fractional abundances along with the uncertanities are visualized by the horizontal bars.

Beam	$v_{p} (m s^{-1})$	S	Ec (kJ mol ⁻¹)	Θ_{CM} (deg)
СН	991 ± 22	12.6 ± 0.6		
C_4H_6	445 ± 17	11.1 ± 1.2	6.2 ± 0.3	61.5 ± 0.6
CD	986 ± 19	12.4 ± 0.6		
C4H6	445 ± 17	11.1 ± 1.2	6.5 ± 0.3	59.7 ± 0.5

Table S1. Peak velocities (v_p) and speed ratios (S) of the methylidyne (CH), d1-methylidyne (CD), and 1,3-butadiene (C₄H₆) reactants along with the corresponding collision energy (E_C) and center-of-mass angle (Θ_{CM}).

Table S2. Statistical branching ratio (%) to **p1-p3** from initial intermediates of **i1-i5** for the reaction of the methylidyne radical (CH) with 1,3-butadiene (CH₂CHCHCH₂) at collision energy (E_c) of 0 and 6.2 kJ mol⁻¹.

Ec		i1	i2	i3	i4	i5
0	p1	76.9	76.9	76.9	76.5	76.5
	p2	0	0	0	0	0
	p3	0	0	0	0	0
6.2	p1	75.3	75.3	75.3	74.9	74.9
	p2	0	0	0	0	0
	p3	0	0	0	0.1	0.1

Table S3. Contributions of selected channels for the reaction of 1,3-butadiene+methylidyne with i1 - i5 as initial intermediates at a collision energy E_C of 6.2 kJ mol⁻¹

Main avit abannals	Initial intermediate					
Wall exit channels	i1	i2	i3	i4	<i>i5</i>	
$i3 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$	98.2447%	98.2579%	98.2591%	71.3572%	70.5073%	
$i7 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$	1.2129%	1.2129%	1.2118%	27.1686%	27.9888%	
$i14 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$	0.4434%	0.4340%	0.4339%	0.3232%	0.3196%	
$i10 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$	0.0507%	0.0506%	0.0506%	1.1094%	1.1429%	
$i30 \rightarrow (i16) \rightarrow p1 + H$	0.0389%	0.0357%	0.0357%	0.0286%	0.0284%	
$i21 \rightarrow i16 \rightarrow p1 + H$	0.0090%	0.0086%	0.0086%	0.0065%	0.0064%	
$i6 \rightarrow i15 \rightarrow i16 \rightarrow p1 + H$	0.0002%	0.0002%	0.0002%	0.0050%	0.0051%	
$i10 \rightarrow i16 \rightarrow p1 + H$	0.0000%	0.0000%	0.0000%	0.0003%	0.0003%	
$i9 \rightarrow i16 \rightarrow p1 + H$	0.0001%	0.0001%	0.0001%	0.0011%	0.0011%	

	k		k		k
i2 - i3	5.30E+12	i17-i21	3.46E+09	i10-i11	1.13E+13
i3 – i2	3.44E+12	i21 - i17	1.59E+11	i11 – i10	6.64E+12
i3 – i15	2.45E+12	i7-i10	1.85E+08	i11 - p3	3.53E+07
i15 – i3	5.14E+12	i10-i7	1.90E+08	i12 - i13	2.71E+08
i15-i16	2.05E+10	i18-i6	2.63E+04	i13 - i12	2.65E+08
i16-i15	2.41E+10	i6-i18	1.41E+06	i19-i20	3.60E+07
i16 – p1	8.61E+10	i18-i19	4.99E+11	i20-i19	2.07E+07
i1 – i3	1.62E+13	i19-i18	5.00E+11	i20 - i22	1.81E+08
i3 – i1	1.06E+05	i1 – i5	6.67E+08	i22 - i20	1.94E+09
i16-i30	7.79E+09	i5 – i1	6.42E+03	i19 - i22	1.48E+07
i30 - i16	4.90E+10	i2-i18	1.61E+07	i22 - i19	1.83E+08
i2 - i23	3.60E+02	i18-i2	3.82E+08	i22 - i24	3.88E+12
i23 - i2	8.85E+04	i6 – p3	3.76E+08	i24 - i22	4.81E+12
i23 - i26	2.23E+12	i8 – i9	2.82E+12	i24 - i25	1.71E+14
i26 - i23	2.47E+12	i9 - i8	2.82E+12	i25 - i24	5.96E+13
i26 - i27	1.96E+12	i5 – i6	3.76E+12	i26 - i25	2.91E+01
i27 - i26	2.44E+12	i6 – i5	2.52E+12	i25 - i26	6.79E+00
i27 - i30	7.18E+10	i4 - i3	3.26E+11	i25 - i28	3.69E+10
i30-i27	4.25E+09	i3 - i4	2.12E+08	i28 - i25	5.47E+11
i30-p1	4.38E+11	i3 - i26	3.66E+00	i28 – p2	6.90E+07
i7 – i8	7.15E+09	i26 - i3	1.54E+03	i28 - i29	6.66E+11
i8-i7	1.25E+10	i5 – p2	2.77E+08	i29 - i28	1.03E+12
i1-i17	3.52E+09	i4 - i5	1.03E+13	i29 - p3	2.19E+08
i17 – i1	7.07E+02	i5 – i4	9.84E+12	i7 – i29	3.93E+06
i16 – i9	2.57E+04	i6 – i7	6.08E+12	i29 - i7	4.69E+06
i9-i16	3.43E+07	i7 – i6	1.16E+13	i15 – i7	9.11E+08
i16 - i21	3.89E+06	i3 - i18	1.60E+07	i7 – i15	4.08E+11
i21 - i16	1.11E+09	i18 – i3	2.92E+08	i3 - i12	2.12E+09
i9-i12	1.35E+07	i2-i5	2.16E+08	i12 – i3	7.65E+11
i12 - i9	1.48E+06	i5 - i2	4.11E+11	i15-i10	5.82E+07
i16-i10	1.01E+04	i15 – i6	7.62E+04	i10-i15	2.68E+10
i10-i16	7.94E+06	i6-i15	3.57E+07		
i13 – i14	1.28E+09	i15-i14	9.31E+09		
i14 - i13	8.28E+08	i14 – i15	1.01E+12		

Table S4. The RRKM rate constants (s⁻¹). The calculated rate constants for H loss channels of $CH + C_4H_6$ reaction at collision energy of 6.2 kJ mol⁻¹.

Reactant 1	Reactant 2	Products	α	β	γ	No.
C_6H_5	C_4H_4	$C_{10}H_8+H$	4.00E-10	0	0	R1
C_4H_6	C_2	C ₆ H ₅ +H	4.00E-10	0	0	R2
C_4H_6	C_2H	C_6H_6+H	4.00E-10	0	0	R3
C_6H_6	hv	C ₆ H ₅ +H	3.00E-09	0	3.1	R4
C_2H_2	CN	HCCCN+H	4.00E-10	0	0	R5
C_3H_6	CH	C_4H_6+H	4.00E-10	0	0	R6
C_2H_4	С	C ₃ H ₃ +H	4.00E-10	0	0	R7
C_2H_4	hv	$C_2H_2+H_2$	3.00E-09	0	3.1	R8
C_4H_6	СН	C ₅ H ₆ +H	4.00E-10	0	0	R9
C_4H_6	C_3H	C5H5CCH+H	4.00E-10	0	0	R10
C_4H_6	C_2N	C5H5CN+H	4.00E-10	0	0	R11
C_4H_6	CN	C ₄ H ₅ CN+H	4.00E-10	0	0	R12
C ₄ H ₅ CN	C_2H	C ₆ H ₅ CN+H	4.00E-10	0	0	R13
C_5H_6	СН	C ₆ H ₆ +H	4.00E-10	0	0	R14
C_2H_4	CN	C ₂ H ₃ CN+H	4.00E-10	0	0	R15
C_5H_6	CH ₂ CHCC	C ₉ H ₈ +H	4.00E-10	0	0	R16
C_5H_6	CN	C5H5CN+H	4.00E-10	0	0	R17
C_6H_6	СН	C ₅ H ₅ CCH+H	4.00E-11	0	0	R18
C_5H_6	$C_{2}H$	C5H5CCH+H	4.00E-10	0	0	R19
C5H5CN	CH ₂ CHCC	C ₉ H ₇ CN+H	4.00E-10	0	0	R20
C_9H_8	CN	C ₉ H ₇ CN+H	4.00E-10	0	0	R21
C_9H_8	СН	$C_{10}H_8+H$	4.00E-10	0	0	R22
C_6H_6	CN	C ₆ H ₅ CN+H	4.00E-10	0	0	R23
C ₆ H ₅ CN	hv	C ₆ H ₄ CN+H	3.00E-09	0	3.1	R24
C ₆ H ₄ CN	C₄H₄	C ₁₀ H ₇ CN+H	4.00E-10	0	0	R25
$C_{10}H_8$	CN	C ₁₀ H ₇ CN+H	4.00E-10	0	0	R26
C ₉ H ₇ CN	СН	C ₁₀ H ₇ CN+H	4.00E-10	0	0	R27
C ₅ H ₆	С	C ₆ H ₅ +H	4.00E-10	0	0	R28
C5H5CN	СН	C ₆ H ₅ CN+H	4.00E-10	0	0	R29
C ₅ H ₅ CN	С	C ₆ H ₄ CN+H	4.00E-10	0	0	R30
C ₆ H ₅ CCH	hv	C ₆ H ₄ CCH+H	3.00E-09	0	3.1	R31
C5H5CCH	СН	C ₆ H ₅ CCH+H	4.00E-10	0	0	R32
C ₅ H ₅ CCH	С	C ₆ H ₄ CCH+H	4.00E-10	0	0	R33
C ₆ H ₆	C ₂ H	C ₆ H ₅ CCH+H	4.00E-10	0	0	R34
C4H5CN	CH	C ₅ H ₅ CN+H	4.00E-10	0	Ő	R35
C ₃ H ₆	CN	C ₃ H ₅ CN+H	4.00E-10	0	Õ	R36
C ₃ H ₅ CN	СН	C ₄ H ₅ CN+H	4.00E-10	0	0	R37
C_2H_6	C ₂ N	C ₃ H ₅ CN+H	4.00E-10	0	0	R38
C_3H_6	C_2N	C ₄ H ₅ CN+H	4.00E-10	0	Õ	R39
C ₆ H ₄ CCH	C ₄ H ₄	C ₁₀ H ₇ CCH+H	4.00E-10	0	0	R40
C10H8	C ₂ H	C ₁₀ H ₇ CCH+H	4.00E-10	0	0	R41
C ₉ H ₈	C ₂ H	C ₉ H ₇ CCH+H	4.00E-10	0	Õ	R42
C ₀ H ₇ CCH	сн	C ₁₀ H ₇ CCH+H	4.00E-10	0	0	R43
C ₃ H ₃	С	C ₄ H ₂ +H	4.00E-10	0	0	R44
C ₃ H ₃	C ₃ H ₃	C ₆ H ₅ +H	4.00E-10	0	Ō	R45
C ₂ H ₄	C ₂ H	C ₄ H ₄ +H	4.00E-10	0	0	R46
C2H6	hv	C ₂ H ₄ +H ₂	3.00E-09	Ő	3.1	R47
C3H6	C ₂ H	C ₃ H ₅ CCH+H	4.00E-10	Ő	0	R48
C3H4CCH	CH	C ₄ H ₅ CCH+H	4.00E-10	0	0	R49
C4H5CCH	C ₂ H	C ₆ H ₅ CCH+H	4.00E-10	Ő	Ő	R50
C ₄ H ₅ CCH	CH	C ₅ H ₅ CCH+H	4.00E-10	0	Ō	R51

Table S5. Important bimolecular reactions and photodissociation processes incorporated into the astrochemical model.

C ₃ H ₆	C ₃ H	C ₄ H ₅ CCH+H	4.00E-10	0	0	R52
C_2H_4	CH	C ₃ H ₄ +H	4.00E-10	0	0	R53
C_3H_4	CH	C ₄ H ₄ +H	4.00E-10	0	0	R54
C_6H_5	C ₄ H ₃ CN	C ₁₀ H ₇ CN	4.00E-10	0	0	R55
C_3H_7	С	C_4H_6+H	4.00E-10	0	0	R56
C_4H_4	CN	C ₄ H ₃ CN+H	4.00E-10	0	0	R57
C ₃ H ₅ CN	hv	C ₃ H ₄ CN+H	3.00E-09	0	3.1	R58
C_3H_7	CN	C ₃ H ₆ CN+H	4.00E-10	0	0	R59
C ₃ H ₆ CN	С	C ₄ H ₅ CN+H	4.00E-10	0	0	R60
C_6H_4	CN	C ₆ H ₃ CN+H	4.00E-10	0	0	R61
C_4H_3	CN	C ₄ H ₂ CN+H	4.00E-10	0	0	R62
C_4H_4	CN	C ₄ H ₃ CN+H	4.00E-10	0	0	R63
C ₄ H ₃ CN	hv	C ₄ H ₂ CN+H	3.00E-09	0	3.1	R64
C_7H_8	C_2N	C ₈ H ₇ CN+H	4.00E-10	0	0	R65
C_8H_8	C_2N	C ₉ H ₇ CN+H	4.00E-10	0	0	R66
C_5H_6	C ₄ H ₂ CN	C ₉ H ₇ CN+H	4.00E-10	0	0	R67
C ₆ H ₃ CN	C_3H_5	C ₉ H ₇ CN+H	4.00E-10	0	0	R68
C_2H_6	C_3H	C ₃ H ₅ CCH+H	4.00E-10	0	0	R69
C ₈ H ₇ CN	CH	C ₉ H ₇ CN+H	4.00E-10	0	0	R70
C_8H_8	CN	C ₈ H ₇ CN+H	4.00E-10	0	0	R71
C_6H_4	C ₃ H ₄ CN	C ₉ H ₇ CN+H	4.00E-10	0	0	R72

Note: For the neutral-neutral bimolecular reactions, α is the pre-exponential factor with units of s⁻¹. β is dimensionless, representing an empirical parameter which reflects the temperature dependence of α . γ is the factor related to the activation energy with units of K (Kelvin). For cosmic-rayinduced photoreaction, α is the cosmic-ray ionization rate (s⁻¹) normalized to a total rate for electron production from cosmic ray ionization of 1.3×10^{-17} s⁻¹ (25), ω is the dust-grain albedo in the far ultraviolet. And γ is dimensionless representing the efficiency of cosmic-ray ionization event (26).

Molecules	N (cm ⁻²)	Abundances	References
C ₃ H ₃	8.7×10^{13}	8.7×10 ⁻⁹	а
	(8-12)×10 ¹³	(8-12)×10 ⁻⁹	b
C ₂ H ₃ CN	$(5-8) \times 10^{12}$	$(5-8) \times 10^{-10}$	с
	6.8×10 ¹²	6.8×10 ⁻¹⁰	d
C4H4	$(1-2) \times 10^{13}$	$(1-2) \times 10^{-9}$	c, e
HC ₃ N	$(2.0-2.5) \times 10^{14}$	$(2.0-2.5) \times 10^{-8}$	f
	2.2×10^{13}	2.2×10 ⁻⁹	g
C ₃ H ₅ CN	$(3-5) \times 10^{11}$	(3-5)×10 ⁻¹¹	ĥ
C4H5CN*1	$(2-5) \times 10^{10}$	$(2-5) \times 10^{-12}$	i
C_5H_6	1.3×10^{13}	1.3×10 ⁻⁹	j
	$(8-16) \times 10^{12}$	(8-16)×10 ⁻¹⁰	e, k
1-C5H5CN	3.1×10 ¹¹	3.1×10 ⁻¹¹	j
	(12-16)×10 ¹¹	(12-16)×10 ⁻¹¹	k
	(7-10)×10 ¹¹	(7-10)×10 ⁻¹¹	l, m
2-C5H5CN	1.3×10^{11}	1.3×10 ⁻¹¹	j
	$(1-2) \times 10^{11}$	$(1-2) \times 10^{-11}$	l, m
C5H5CCH	$(2-5) \times 10^{12}$	$(2-5) \times 10^{-10}$	j
C ₆ H ₅ CN	1.2×10^{12}	1.2×10^{-10}	j
	$(1-2) \times 10^{12}$	$(1-2) \times 10^{-10}$	n
	4×10^{11}	4×10 ⁻¹¹	0
	$(7-26) \times 10^{11}$	(7-26)×10 ⁻¹¹	1
C ₆ H ₅ CCH	$(2-3) \times 10^{12}$	$(2-3) \times 10^{-10}$	j
C9H8	1.6×10^{13}	1.6×10 ⁻⁹	j
	$(8-14) \times 10^{12}$	(8-14)×10 ⁻¹⁰	1
	$(8-10) \times 10^{12}$	(8-10)×10 ⁻¹⁰	р
2-C9H7CN	$(1-3) \times 10^{11}$	(1-3)×10 ⁻¹¹	р
$1-C_{10}H_7CN$	$(2-11) \times 10^{11}$	(2-11)×10 ⁻¹¹	l, q
2-C10H7CN	$(3-12) \times 10^{11}$	(3-11)×10 ⁻¹¹	1, q

Table S6. Column density of important C_nH_m , C_nH_mCN , and C_nH_mCCH species in TMC-1. The observed abundances are reported in cited references.

 *1 The observed abundance is only for s-*trans-E*-1-cyano-1,3-butadiene (CH₂CHCHCHCN) isomer, the total abundances are expected to increase sharply with more C₄H₅CN isomers identified in the future.

a) Ag úndez, M. et al. Astron. Astrophys. 647, L10 (2021). b) Ag úndez, M. et al. Astron. Astrophys. 657, A96 (2022).
c) Cernicharo, J. et al. Astron. Astrophys. 647, L2 (2021). d) Minh, Y. C. et al. Astrophys. Space Sci. 175, 165-169 (1991). e) Cernicharo, J. et al. Astron. Astrophys. 663, L9 (2022). f). Cernicharo, J. et al. Astron. Astrophys. 642, L8 (2020). g) Langer, W. D. et al. Astrophys. J. 239, L125 (1980). h) Cernicharo, J. et al. Astron. Astrophys. 663, L5 (2022). i) Cooke, I. R. et al. Astrophys. J. 948, 133 (2023). j) Cernicharo, J. et al. Astron. Astrophys. 655, L1 (2021).
k) McCarthy, M. C. et al. Nat. Astron. 5, 176-180 (2021). l) Burkhardt, A. M. et al. Astrophys. J. Lett. 913, L18 (2021). m) Lee, K. L. K. et al. Astrophys. J. Lett. 910, L2 (2021). n) Burkhardt, A. M. et al. Nat. Astron. 5, 181-187 (2021). o) McGuire, B. A. et al. Science 359, 202-205 (2018). p) Sita, M. L. et al. Astrophys. J. Lett. 938, L12 (2022).
q) McGuire, B. A. et al. Science 371, 1265-1269 (2021).

References

- 1. J. Cernicharo *et al.*, TMC-1, the starless core sulfur factory: Discovery of NCS, HCCS, H₂CCS, H₂CCCS, and C₄S and detection of C₅S. *Astron. Astrophys.* **648**, L3 (2021).
- J.-C. Loison, M. Agúndez, V. Wakelam, E. Roueff, P. Gratier, N. Marcelino, D. N. Reyes, J. Cernicharo, M. Gerin, The interstellar chemistry of C₃H and C₃H₂ isomers. *Mon. Not. R. Astron. Soc.* 470, 4075-4088 (2017).
- A. Canosa, I. R. Sims, D. Travers, I. W. M. Smith, B. R. Rowe, Reactions of the methylidine radical with CH₄, C₂H₂, C₂H₄, C₂H₆, and but-1-ene studied between 23 and 295 K with a CRESU apparatus. *Astron. Astrophys.* 323, 644-651 (1997).
- J.-C. Loison, A. Bergeat, Rate constants and the H atom branching ratio of the reactions of the methylidyne CH (X²Π) radical with C₂H₂, C₂H₄, C₃H₄ (methylacetylene and allene), C₃H₆ (propene) and C₄H₈ (trans-butene). *Phys. Chem. Chem. Phys.* **11**, 655-664 (2009).
- S. Hamon, S. D. Le Picard, A. Canosa, B. R. Rowe, I. W. M. Smith, Low temperature measurements of the rate of association to benzene dimers in helium. *J. Chem. Phys.* 112, 4506-4516 (2000).
- 6. S. Doddipatla *et al.*, Low-temperature gas-phase formation of indene in the interstellar medium. *Sci. Adv.* 7, eabd4044 (2021).
- J. Cernicharo, R. Fuentetaja, M. Agúndez, R. I. Kaiser, C. Cabezas, N. Marcelino, B. Tercero, J. R. Pardo, P. de Vicente, Discovery of fulvenallene in TMC-1 with the QUIJOTE line survey. *Astron. Astrophys.* 663, L9 (2022).
- 8. M. C. McCarthy *et al.*, Interstellar detection of the highly polar five-membered ring cyanocyclopentadiene. *Nat. Astron.* **5**, 176-180 (2021).
- J. Cernicharo, M. Agúndez, R. Kaiser, C. Cabezas, B. Tercero, N. Marcelino, J. Pardo, P. De Vicente, Discovery of two isomers of ethynyl cyclopentadiene in TMC-1: Abundances of CCH and CN derivatives of hydrocarbon cycles. *Astron. Astrophys.* 655, L1 (2021).
- 10. A. M. Burkhardt *et al.*, Discovery of the pure polycyclic aromatic hydrocarbon indene (c-C₉H₈) with GOTHAM observations of TMC-1. *Astrophys. J. Lett.* **913**, L18 (2021).
- K. L. K. Lee, P. B. Changala, R. A. Loomis, A. M. Burkhardt, C. Xue, M. A. Cordiner, S.
 B. Charnley, M. C. McCarthy, B. A. McGuire, Interstellar detection of 2cyanocyclopentadiene, C₅H₅CN, a second five-membered ring toward TMC-1. *Astrophys.*

J. Lett. **910**, L2 (2021).

- 12. M. L. Sita *et al.*, Discovery of interstellar 2-cyanoindene (2-C₉H₇CN) in GOTHAM observations of TMC-1. *Astrophys. J. Lett.* **938**, L12 (2022).
- B. A. McGuire, A. M. Burkhardt, S. Kalenskii, C. N. Shingledecker, A. J. Remijan, E. Herbst, M. C. McCarthy, Detection of the aromatic molecule benzonitrile (c-C₆H₅CN) in the interstellar medium. *Science* 359, 202-205 (2018).
- A. M. Burkhardt, R. A. Loomis, C. N. Shingledecker, K. L. K. Lee, A. J. Remijan, M. C. McCarthy, B. A. McGuire, Ubiquitous aromatic carbon chemistry at the earliest stages of star formation. *Nat. Astron.* 5, 181-187 (2021).
- 15. B. A. McGuire *et al.*, Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. *Science* **371**, 1265-1269 (2021).
- M. Agúndez, C. Cabezas, B. Tercero, N. Marcelino, J. Gallego, P. de Vicente, J. Cernicharo, Discovery of the propargyl radical (CH₂CCH) in TMC-1: One of the most abundant radicals ever found and a key species for cyclization to benzene in cold dark clouds. *Astron. Astrophys.* 647, L10 (2021).
- 17. M. Agúndez, N. Marcelino, C. Cabezas, R. Fuentetaja, B. Tercero, P. de Vicente, J. Cernicharo, Detection of the propargyl radical at λ 3 mm. *Astron. Astrophys.* **657**, A96 (2022).
- 18. J. Cernicharo *et al.*, Discovery of CH₂CHCCH and detection of HCCN, HC₄N, CH₃CH₂CN, and, tentatively, CH₃CH₂CCH in TMC-1. *Astron. Astrophys.* **647**, L2 (2021).
- 19. W. D. Langer, F. P. Schloerb, R. L. Snell, J. S. Young, Detection of deuterated cyanoacetylene in the interstellar cloud TMC 1. *Astrophys. J.* **239**, L125-L128 (1980).
- J. Cernicharo, N. Marcelino, M. Agúndez, C. Bermúdez, C. Cabezas, B. Tercero, J. Pardo, Discovery of HC4NC in TMC-1: A study of the isomers of HC3N, HC5N, and HC7N. *Astron. Astrophys.* 642, L8 (2020).
- Y. C. Minh, W. M. Irvine, Upper limits for the ethyl-cyanide abundances in TMC-1 and L134N: Chemical implications. *Astrophys. Space Sci.* 175, 165-169 (1991).
- J. Cernicharo, R. Fuentetaja, C. Cabezas, M. Agúndez, N. Marcelino, B. Tercero, J. R. Pardo, P. de Vicente, Discovery of five cyano derivatives of propene with the QUIJOTE line survey. *Astron. Astrophys.* 663, L5 (2022).
- 23. M. Agúndez, N. Marcelino, B. Tercero, J. Cernicharo, Aromatic cycles are widespread in

cold clouds. Astron. Astrophys. 677, L13 (2023).

- C. Cabezas, I. Peña, J. Cernicharo, Laboratory rotational spectroscopy and astronomical search of ethynyl substituted naphthalene. *Mon. Not. R. Astron. Soc.* 519, 2590-2597 (2023).
- S. S. Prasad, W. T. Huntress Jr, A model for gas phase chemistry in interstellar clouds. I-The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. *Astrophys. J., Suppl. Ser.* 43, 1-35 (1980).
- 26. R. Gredel, S. Lepp, A. Dalgarno, E. Herbst, Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules. *Astrophys. J.* **347**, 289-293 (1989).