

Spectroscopic Study of Ice Analogs of Trans-Neptunian Objects Exposed to Ionizing Radiation. II. Infrared Spectra and Functional Groups

Chaojiang Zhang^{1,2}, Jia Wang^{1,2}, Andrew M. Turner^{1,2}, Leslie A. Young³, and Ralf I. Kaiser^{1,2} ¹Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822, USA; ralfk@hawaii.edu ²W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Mānoa, Honolulu, HI 96822, USA ³Department of Space Studies, Southwest Research Institute, Boulder, CO 80302, USA; layoung@boulder.swri.edu *Received 2025 February 14; revised 2025 April 8; accepted 2025 April 24; published 2025 June 16*

Abstract

The surfaces of airless trans-Neptunian objects (TNOs) are subject to continuous ionizing radiation from solar winds and Galactic cosmic rays accompanied by alteration of surface compositions. The crust resulting from chemical reactions and products at various radiation levels can influence their spectral gradients and surface colors, which are essentially controlled by the chromophores of complex organic molecules. This study presents comprehensive infrared spectra of TNO-analog ices processed by ionizing radiation, which include water, methane, ammonia, carbon monoxide, carbon dioxide, and methanol along with their binary mixtures. The spectral data suggest that complex organic and inorganic products are synthesized when carbon-bearing ice mixtures are exposed to proxies of Galactic cosmic-ray and solar wind irradiation. A series of functional groups of hydrocarbons, hydroxyl, amine, carbonyl, imine, cyanate, and nitrile are identified, which can be incorporated in complex compounds including alcohols, aldehydes, ketones, carboxylic acids, esters, amines, amides, cyanates, and nitriles along with critical prebiotic molecules such as sugar and amino acids. By combining them with corresponding visible reflectance spectra, these species play a crucial role in revealing the color diversity of TNOs and are also highly relevant to the emergence of life in our solar system. The findings in this study serve as an important starting point to fully unravel the chemical complexity, compositions, and evolutionary processes of objects in the outer solar system and will also provide fundamental support for the interpretation of astronomical observations such as those from the James Webb Space Telescope.

Unified Astronomy Thesaurus concepts: Trans-Neptunian objects (1705); Surface ices (2117); Experimental data (2371); Infrared spectroscopy (2285)

1. Introduction

Trans-Neptunian objects (TNOs) represent a vast population of small objects in the outer solar system whose heliocentric orbits hold semimajor axes between Neptune and the Oort cloud, approximately 30-2000 au from the Sun (D. Jewitt & J. Luu 1993; D. K. Prialnik et al. 2020; B. Gladman & K. Volk 2021). Considering the large distance, TNOs have a low surface temperature typically ranging from 30 to 50 K and thereby are covered with various molecular ices. Pluto's surface, one of the largest TNOs, is dominated by solid water (H₂O), nitrogen (N₂), methane (CH₄), and carbon monoxide (CO) (M. E. Brown 2012; D. P. Cruikshank et al. 2015; M. A. Barucci & F. Merlin 2020; L. A. Young et al. 2020; M. N. De Prá et al. 2025; N. Pinilla-Alonso et al. 2025). Simultaneously, the surfaces of these icy bodies are subject to continuous irradiation by the solar wind, ultraviolet photons, and Galactic cosmic rays (GCRs), leading to complex chemical products that are essential in understanding the color diversity of TNOs (D. C. Jewitt & J. X. Luu 2001; J. F. Cooper et al. 2003; D. P. Cruikshank et al. 2005; R. Brunetto et al. 2006; M. E. Brown et al. 2011; C. J. Bennett et al. 2013; N. Sakakibara et al. 2020; E. Quirico et al. 2023; C. Zhang et al. 2023b, 2024). Knowledge of these compounds in trans-Neptunian (TN) space can provide valuable clues for understanding the chemical and physical conditions of the

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

protoplanetary disk, the processes involved in planetary formation, and the constraints of the migration models of giant planets, which are pivotal in sculpting the early history of our solar system (J. X. Luu & D. C. Jewitt 2002; M. Barucci et al. 2008; D. Nesvorný 2018; D. Nesvorný et al. 2019; D. K. Prialnik et al. 2020; K. I. Öberg et al. 2023). The dynamical simulation of the solar system suggests that TNOs are one of the main sources of short-period comets like 67P/Churyumov–Gerasimenko, which are possibly transformed into delivery systems for important prebiotic species to the nascent Earth (C. F. Chyba et al. 1990; C. Chyba & C. Sagan 1992; M. Pasek & D. Lauretta 2008; D. Nesvorný et al. 2017; C. R. Walton et al. 2024). Thus, the investigation of molecules on TNOs along with underlying formation mechanisms, especially biologically relevant compounds like sugars and amino acids, has promise to shed light on the origin of life in our solar system (J. R. Cronin & S. Pizzarello 1997; G. Cooper et al. 2001; K. Altwegg et al. 2016; G. Cooper & A. C. Rios 2016; D. P. Cruikshank et al. 2019; Y. Furukawa et al. 2019; Y. Oba et al. 2019; S. A. Sandford et al. 2020). However, numerous compositions of TNOs remain inadequately described due to most TNOs being too faint to permit a detailed spectroscopic study.

Despite the fact that probing the materials on the surface of TNOs by remote observation remains a challenge, laboratory investigations of TNO surface ice analogs processed by various radiation sources can effectively facilitate the understanding of molecule distributions on these small bodies (R. Hudson et al. 2008; C. J. Bennett et al. 2013; B. C. Ferrari et al. 2021). The first confirmed and also most widespread

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 279:1 (49pp), 2025 July

Zhang et al.

Figure 1. Molecules identified on the surface of TNOs. The colors correspond to the following elements: hydrogen (white), carbon (gray), nitrogen (blue), and oxygen (red). Note that ground- and space-based observations also indicate silicates and unassigned refractory carbonaceous materials on TNO surfaces, along with tentative detection of hydrogen sulfide (H_2S), which is not presented here.

 Table 1

 Experimental Parameters of the Ices, Ratio, and Temperature Used in This Work

Ice No.	Composition	Ratio	Temperature (K)	Ice No.	Composition	Ratio	Temperature (K)
1	H ₂ O		40	19	${}^{13}\text{CH}_4$: ${}^{13}\text{CO}_2$	$(1.1 \pm 0.2): 1$	20
2	H_2O		10	20	${}^{13}\text{CH}_4$: ${}^{13}\text{CO}_2$	(1.2 ± 0.2) : 1	10
3	NH ₃		40	21	¹³ CH ₄ : ¹³ CH ₃ OH	(2.2 ± 0.2) : 1	20
4	NH_3		10	22	¹³ CH ₄ : ¹³ CH ₃ OH	(0.8 ± 0.2) : 1	10
5	H_2O : ¹³ CH ₄	(1.8 ± 0.2) : 1	20	23	NH_3 : ¹³ CO	(0.4 ± 0.2) : 1	20
6	H_2O : ¹³ CH ₄	$(1.7 \pm 0.2): 1$	10	24	NH_3 : ¹³ CO	(0.4 ± 0.2) : 1	10
7	H_2O : NH_3	(2.8 ± 0.2) : 1	40	25	NH_3 : ${}^{13}CO_2$	(0.6 ± 0.2) : 1	40
8	H_2O : NH_3	$(2.6 \pm 0.2): 1$	10	26	NH_3 : ${}^{13}CO_2$	(0.6 ± 0.2) : 1	10
9	H_2O : ¹³ CO	(1.0 ± 0.2) : 1	20	27	NH_3 : ¹³ CH ₃ OH	$(0.3 \pm 0.2): 1$	40
10	H_2O : ¹³ CO	(1.6 ± 0.2) : 1	10	28	NH_3 : ¹³ CH ₃ OH	$(0.3 \pm 0.2): 1$	10
11	H_2O : ¹³ CO ₂	(1.2 ± 0.2) : 1	40	29	^{13}CO : $^{13}\text{CO}_2$	(1.1 ± 0.2) : 1	20
12	H_2O : ¹³ CO ₂	(1.2 ± 0.2) : 1	10	30	${}^{13}\text{CO}: {}^{13}\text{CO}_2$	(1.1 ± 0.2) : 1	10
13	H_2O : ¹³ CH ₃ OH	(1.0 ± 0.2) : 1	40	31	¹³ CO : ¹³ CH ₃ OH	(1.2 ± 0.2) : 1	20
14	$H_{2}O$: ¹³ CH ₃ OH	(0.8 ± 0.2) : 1	10	32	¹³ CO : ¹³ CH ₃ OH	(1.1 ± 0.2) : 1	10
15	$^{13}CH_4$: NH ₃	(1.8 ± 0.2) : 1	20	33	¹³ CO ₂ : ¹³ CH ₃ OH	(1.2 ± 0.2) : 1	40
16	${}^{13}CH_4 : NH_3$	(1.7 ± 0.2) : 1	10	34	${}^{13}\text{CO}_2$: ${}^{13}\text{CH}_3\text{OH}$	(1.2 ± 0.2) : 1	10
17	$^{13}CH_4$: ^{13}CO	(1.0 ± 0.2) : 1	20				
18	¹³ CH ₄ : ¹³ CO	(0.9 ± 0.2) : 1	10				

Note. All ices have a thickness of 850 ± 50 nm with an irradiation dose up to 82 ± 10 eV amu⁻¹ and are then warmed up to 320 K at 1 K min⁻¹.

molecule on TNOs is solid water (R. H. Brown et al. 1999; M. Barucci et al. 2008; M. E. Brown 2012; M. S. Gudipati & J. Castillo-Rogez 2013), and therefore extensive studies have been carried out to explore the radiation chemistry on water-bearing ices with primary products of hydrogen peroxide (H_2O_2), hydrogen (H_2), and oxygen (O_2) (M. H. Moore et al. 2003; R. L. Hudson & M. H. Moore 2005; W. Zheng et al. 2006a, 2009b; T. Bartels-Rausch et al. 2012; A. L. F. de Barros et al. 2015; K. A. Kipfer et al. 2024). H_2O_2 was recently confirmed on Charon by the James Webb Space Telescope (JWST; S. Protopapa et al. 2024). Except for H_2O , the spectroscopic and chemical evolution of processed ice mixtures containing N_2 , CH_4 , and CO molecules has also been studied as a consequence of their detection on Pluto (C. J. Bennett et al. 2009; Y. S. Kim et al. 2011; Y. S. Kim & R. I. Kaiser 2012; C. K. Materese et al. 2014; C. K. Materese et al. 2015; B. Augé et al. 2016; M. J. Abplanalp et al. 2018; R. L. Hudson 2018; F. A. Vasconcelos et al. 2020; N. F. Kleimeier et al. 2022). In

Figure 2. Infrared spectra of water (H_2O) before (top) and after (middle) irradiation at 40 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 2. L and d indicate libration and dangling, respectively.

addition, observation data have reported the existence of additional molecules on the surface of TNOs, including ammonia (NH_3) , carbon dioxide (CO_2) , methanol (CH_3OH) , ethane (C_2H_6) , ethylene (C_2H_4), acetylene (C_2H_2), and cyanate ion (OCN⁻) along with tentative detection of hydrogen sulfide (H₂S), silicates, and tholin-like constituents (Figure 1; M. E. Brown 2012; T. Seccull et al. 2018; M. A. Barucci & F. Merlin 2020; W. M. Grundy et al. 2020; J. P. Emery et al. 2024; M. N. De Prá et al. 2025; N. Pinilla-Alonso et al. 2025). Irradiation experiments of ices composed of these molecules have suggested that various complex organic molecules could potentially be detected in TN space and reproduce the colors of TNOs through chemical reactions (M. E. Brown et al. 2011; W. M. Grundy et al. 2016; M. J. Poston et al. 2018; N. Sakakibara et al. 2020; N. F. Kleimeier et al. 2022; Y. Y. Phua et al. 2022; C. Zhang et al. 2023b, 2024). R. Brunetto et al. (2006) reported a strong

reddening phenomenon when frozen CH₄ and CH₃OH are exposed to ion radiation in a vacuum, and observed dark refractory residues. N. Sakakibara et al. (2020) demonstrated that the reddish coloration from processed H₂O-CH₃OH ice mixtures disappears upon heating to room temperature, suggesting that some ultrared materials in TN space might only be stable at low temperatures. E. Quirico et al. (2023) employed high-energy heavy ions to process CH₃OH ices and found that the formation of conjugated olefinic groups can control the absorption of short wavelengths in the visible spectrum that could result in the reddish matter on Arrokoth. Our previous irradiation experiments suggested that ionizing radiation exposure on carbon-containing ices presents notable reddening on the visible reflectance due to the formation of complex organic molecules having absorption in the visible wavelengths (C. Zhang et al. 2025a), e.g., polycyclic aromatic hydrocarbons (PAHs) connected by

Figure 3. Infrared spectra of water (H_2O) before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. Detailed peak assignments are listed in Table 2. L and d indicate libration and dangling, respectively.

 Table 2

 Infrared Absorption Features of Water (H₂O) and Ammonia (NH₃) Ices before and after Irradiation at 40 and 10 K

40 K		10 K				
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference	
	Positior	(cm^{-1})				
	Water	(H ₂ O)				
6789	6753	6799	6776	$2v_1/2v_3$ (H ₂ O)	(1, 2, 3, 4)	
5324		5324		$v_{d(O-H)} + v_1 + v_2/v_{d(O-H)} + v_2 + v_3$ (H ₂ O)	(1, 2, 3, 4)	
5076	5000	5075	5044	$v_1 + v_3/v_2 + v_3$ (H ₂ O)	(1, 2, 3, 4)	
4395				$2v_2 + 2v_L$ (H ₂ O)	(1, 2, 3, 4)	
3716, 3693		3717, 3693		$v_{d(O-H)}$	(1, 2, 3, 4)	
3269	3200	3269	3210	v_{1}/v_{3} (H ₂ O)	(1, 2, 3, 4)	
		•••	2851	$v_2 + v_6 (H_2O_2)$	(2, 5)	
2215	2231	2208	2213	$v_2 + v_L (H_2O)$	(1, 2, 3, 4)	
1664	1666	1664	1664	v_2 (H ₂ O)	(1, 2, 3, 4)	
802	820	803	821	$v_{\rm L}$ (H ₂ O) libration	(1, 2, 3, 4)	
	Ammon	ia (NH ₃)				
6514		6514		$2v_1$ (NH ₃)	(6, 7)	
6100	•••	6100	•••	$v_2 + v_3 + v_4$ (NH ₃)	(6, 7)	

			(Continued)		
40 K		10	К		
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference
	Positior	$m(cm^{-1})$			
4995		4995		$v_3 + v_4 (\text{NH}_3)$	(6, 7)
4476		4475		$v_2 + v_3 (\text{NH}_3)$	(6, 7)
4334		4334		$v_1 + v_2 (\text{NH}_3)$	(6, 7)
3370	3367	3370	3367	v ₃ (NH ₃)	(6, 7)
3212	3208	3212	3209	v_1 (NH ₃)	(6, 7)
	3048		3052	N-H stretch within cis-HN=NH	(7, 8)
	2774	•••	2774	N-H stretch within N=NH ₂	(7, 8)
2430	2440	2431	2436	N-H ⁺ stretch	(7, 8)
			2328	$N \equiv N$ stretch within N_2	(7, 8)
	2088	•••	2087	N-N-N asymmetric stretch within HN ₃	(7, 8)
1626	1630	1626	1629	$v_4 (\mathrm{NH}_3)$	(6, 7)
1074	1098	1067	1091	<i>v</i> ₂ (NH ₃)	(6, 7)

Table 2(Continued)

References. (1) W. Zheng et al. (2009b); (2) W. Zheng et al. (2006a); (3) V. Buch & J. P. Devlin (1991); (4) C. M. Tonauer et al. (2021); (5) W. Zheng et al. (2006b); (6) J. S. Holt et al. (2004); (7) W. Zheng et al. (2008); (8) G. Socrates (2004).

Figure 4. Infrared spectra of ammonia (NH₃) before (top) and after (middle) irradiation at 40 K. Detailed peak assignments are listed in Table 2. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom.

Figure 5. Infrared spectra of ammonia (NH₃) before (top) and after (middle) irradiation at 10 K. Detailed peak assignments are listed in Table 2. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom.

unsaturated linkers (C. Zhang et al. 2023b) and sugar (related) molecules (C. Zhang et al. 2024). However, it is not feasible to define specific chromophores—functional groups responsible for the colors of matter—from the visible reflectance spectra due to the lack of distinctive features.

This paper presents the infrared spectra data of GCR proxy processed ices of water, methane, ammonia, carbon monoxide, carbon dioxide, and methanol along with their binary mixtures as analogs of TNO surface compositions. Altogether, there are 34 ices composed of these compounds, which are listed in Table 1. These experiments mimic GCR penetration into small TNOs and form various products, contributing to the diverse colors of TNOs (R. E. Johnson 1990; J. F. Cooper et al. 2003; G. Strazzulla et al. 2003; C. J. Bennett et al. 2005; R. I. Kaiser et al. 2011; Y. S. Kim & R. I. Kaiser 2012; B. M. Jones & R. I. Kaiser 2013;

A. M. Turner & R. I. Kaiser 2020; C. Zhang et al. 2023b, 2025a). The formation of key functional groups related to chromophores, which in fact dictate the color, is analyzed, starting with distinct precursor molecules. The irradiation temperatures are kept at 40 K, which mimics the cryogenic condition for TNOs. Methane and carbon monoxide cannot condense at this temperature (C. J. Bennett et al. 2004, 2006); therefore, methane- and carbon monoxidebearing samples are processed at 20 K. In addition, the infrared spectra at 10 K are also collected, which are highly relevant to the surface composition of TNOs with an average temperature lower than 20 K, such as Sedna (S. M. Menten et al. 2022), objects in the Oort cloud, and of ice-coated interstellar nanoparticles in cold molecular clouds (M. K. McClure et al. 2023; H. M. Cuppen et al. 2024; J. A. Noble et al. 2024). This comprehensive set of infrared

Figure 6. Infrared spectra of water-methane ($H_2O^{-13}CH_4$) ice mixtures before (top) and after (middle) irradiation at 20 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 3. L indicates libration.

spectra data, combined with their visible reflectance spectra, will provide important information for understanding the color diversity of TNOs along with underlying compositions and fundamental support for the interpretation of astronomical observations such as those from Spitzer and JWST.

2. Experimental Methods

The irradiation experiments were performed in an ultrahigh vacuum chamber at a pressure of about 10^{-11} Torr, which has been described in detail elsewhere (M. J. Abplanalp et al. 2016a; A. M. Turner & R. I. Kaiser 2020). In the chamber, a polished silver wafer was attached to an oxygen-free high conductivity copper target via indium foil. The copper target was connected to a two-stage closed-cycle helium refrigerator

(CTI-Cryogenics Cryodyne 1020, compressor: CTI-Cryogenics 9600) to generate a cryogenic temperature. This temperature was monitored by a silicon diode sensor (Lakeshore DT-470) and regulated in a range of 5–320 K by a programmable temperature controller (Lakeshore 336). When the silver wafer was cooled to 5.0 ± 0.1 K, the TNO ice analogs were prepared by introducing high-purity methane (¹³CH₄, 99% atom ¹³C, Sigma Aldrich), water (H₂O, HPLC, Fisher Chemical), ammonia (NH₃, 99.9992%, Matheson), carbon monoxide (¹³CO₂, 99% atom ¹³C, Sigma Aldrich), and methanol (¹³CH₃OH, Sigma Aldrich, 99.9%) at the pressure of $\sim 3 \times 10^{-8}$ Torr in the chamber, followed by deposition on the wafer via a glass capillary array. The mixed ices were codeposited by using two glass capillary arrays concurrently.

Table	2 3
Infrared Absorption Features of Water-Methane (H ₂ O- ¹³ CH	4) Ice Mixtures before and after Irradiation at 20 and 10 K

20 K		1	0 K			
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference	
	Positio	$n (cm^{-1})$				
6715		6763		$2v_1/2v_3$ (H ₂ O)	(1, 2, 3, 4, 5)	
5966		5966	•••	$2v_3$ (¹³ CH ₄)	(6, 7)	
5780		5781	•••	$v_1 + v_3 ({}^{13}\text{CH}_4)$	(6, 7)	
5536		5539		$v_3 + 2v_4 (^{13}\text{CH}_4)$	(6, 7)	
5292		5285		$v_{d(O-H)} + v_1 + v_2/v_{d(O-H)} + v_2 + v_3$ (H ₂ O)	(1, 2, 3, 4, 5)	
5085	5099	5098	5107	$v_1 + v_3/v_2 + v_3$ (H ₂ O)	(1, 2, 3, 4, 5)	
	•••		4743, 4661	?		
4520	4516	4520	4520	$v_2 + v_3 ({}^{13}\text{CH}_4)$	(6, 7)	
	•••		4387	¹³ CH ₂ OH combination		
4282	4282	4282	4283	$v_3 + v_4 ({}^{13}\text{CH}_4)$	(6, 7)	
4193	4195	4194	4194	$v_1 + v_4 ({}^{13}\text{CH}_4)$	(6, 7)	
3684, 3660	•••	3683, 3660		Vd(O-H)	(1, 2, 3, 4, 5)	
•••	3620	•••	3619	$v_1 + v_3 ({}^{13}\text{CO}_2)$	(9, 10)	
3403, 3288, 3261, 3198		3388, 3294, 3239, 3205		v_{1/v_3} (H ₂ O)	(1, 2, 3, 4, 5)	
	3633, 3464, 3391, 3289, 3133		3636, 3453, 3391, 3274, 3128	O-H stretch	(13)	
2999	3000	2999	2999	$v_3 ({}^{13}\text{CH}_4)$	(6, 7)	
	2963, 2930, 2903, 2870, 2823		2966, 2901, 2877, 2815, 2734	¹³ C–H stretch	(13)	
2901		2901	•••	$v_1 ({}^{13}\text{CH}_4)$	(6, 7)	
2808		2808	•••	$v_2 + v_4 ({}^{13}\text{CH}_4)$	(6, 7)	
	2342		2341	v ₃ (CO ₂)	(9, 10)	
	2275		2275	$v_3 ({}^{13}\text{CO}_2)$	(9, 10)	
2578		2579	•••	$2v_4$ (¹³ CH ₄)	(6, 7)	
2206		2205	•••	$v_2 + v_L (H_2O)$	(1, 2, 3, 4, 5)	
	2091		2090	$v_1 (^{13}CO)$	(8, 10)	
	1677, 1581		1679, 1569	¹³ C=O stretch	(13)	
1655	1657	1653	1657	v ₂ (H ₂ O)	(1, 2, 3, 4, 5)	
	1499		1499	v_3 (H ₂ ¹³ CO)	(11)	
	1460, 1426, 1277		1460, 1426, 1277	$O-H/^{13}C-H$ deformation	(13)	
1293	1294	1293	1294	$v_4 ({}^{13}\text{CH}_4)$	(6, 7)	
	1001		1003	¹³ C–O stretch	(12, 13)	
	835		843	¹³ C-H out-of-plane bending	(13)	
805		803		$v_{\rm L}$ (H ₂ O) libration	(1, 2, 3, 4, 5)	

Note. ? in column (5) means these peaks are difficult to assign.

References. (1) W. Zheng et al. (2009b); (2) W. Zheng et al. (2006a); (3) V. Buch & J. P. Devlin (1991); (4) C. M. Tonauer et al. (2021); (5) P. D. Tribbett et al. (2021); (6) M. J. Abplanalp et al. (2018); (7) C. J. Bennett et al. (2006); (8) C. J. Bennett et al. (2009); (9) P. A. Gerakines & R. L. Hudson (2015); (10) H. Carrascosa et al. (2019); (11) M. M. Wohar & P. W. Jagodzinski (1991); (12) C. Zhang et al. (2024); (13) G. Socrates (2004).

Here, we used carbon-13 labeled reactants to eliminate potential contaminants. The thickness (*d*) of each ice system was determined with Equation (1) (O. S. Heavens 1955; A. M. Turner et al. 2015), where N is the number of interference fringes recorded during the ice deposition by a helium-neon laser (CVI Melles-Griot, 25-LHP-230, 632.8 nm), n is the ice's refractive index at 632.8 nm, and $\theta = 4^{\circ}$ is the angle of incidence:

$$d = \frac{N\lambda}{2\sqrt{n^2 - \sin^2\theta}}.$$
 (1)

The thickness of each ice was controlled to be 850 ± 50 nm by monitoring the number of fringes during deposition (A. M. Turner et al. 2015). The refractive indices used here

are as follows: water (1.27 ± 0.02) , methane (1.34 ± 0.04) , ammonia (1.33 ± 0.01) , carbon monoxide (1.292 ± 0.003) , carbon dioxide (1.27 ± 0.02) , and methanol (1.296 ± 0.005) (M. Bouilloud et al. 2015; R. L. Hudson et al. 2020; R. L. Hudson et al. 2022, 2024; P. A. Gerakines et al. 2023). The refractive indices of binary ice mixtures were derived by averaging the refractive index of two components. After deposition, ices were warmed to 40, 20, and 10 K, respectively, at a ramping rate of 1 K minute⁻¹ (L. A. Young et al. 2020; S. M. Menten et al. 2022). Then, the ices were isothermally processed by 5 keV energetic electrons (Specs EQ 22/35 electron source) to simulate the secondary electrons formed in the track of GCRs penetrating into the surfaces of TNOs. The electron incidence angle was 70° to the ice surface normal. Utilizing Monte Carlo simulations

Figure 7. Infrared spectra of water-methane $(H_2O^{-13}CH_4)$ ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 3. L indicates libration.

Table 4		
Infrared Absorption Features of Water-Ammonia (H2O-NH3) Ice Mixtures before and after Irradiation at 40 a	ind 10	Κ

40 K		10 K	10 K		
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference
	Positic	on (cm^{-1})			
6801		6793		$2v_1/2v_3$ (H ₂ O)	(1, 2, 3, 4)
6581		6582		$2v_1$ (NH ₃)	(5, 6, 7)
5105	5101	5109	5107	$v_1 + v_3/v_2 + v_3$ (H ₂ O)	(1, 2, 3, 4)
5015	5016	5016	5016	$v_3 + v_4 (\text{NH}_3)$	(5, 6, 7)
4522	4537	4525	4534	$v_2 + v_3 (\text{NH}_3)$	(5, 6, 7)
	4141		4140	$v_1/v_3 + v_L (H_2O)$	(1, 2, 3, 4)
3699		3698		Vd(O-H)	(1, 2, 3, 4)
3384	3382	3382	3380	v_3 (NH ₃)	(5, 6, 7)
3434, 3265, 3236, 3128, 2891	3245, 3212	3471, 3291, 3254, 3135, 2896	3414, 3246, 3232	v_1/v_3 (H ₂ O)	(1, 2, 3, 4)
2921	2923	2921	2921	$H_2O \cdot NH_3$ complex	(7, 8, 9)
2444	2448	2451	2452	N-H ⁺ stretch	(7, 8, 9)

	(Continued)								
40	K	10 K							
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference				
	Position (cm^{-1})							
2230	2213	2227	2179	$v_2 + v_L (H_2O)$	(1, 2, 3, 4)				
	1699		1700	N-H deformation	(7, 8, 9)				
1660	1646	1662	1662	v_2 (H ₂ O)	(1, 2, 3, 4)				
1630		1636		$v_4 (\mathrm{NH}_3)$	(5, 6, 7)				
1111	1122	1111	1121	v ₂ (NH ₃)	(5, 6, 7)				
805	837	803	837	$v_{\rm L}$ (H ₂ O) libration	(1, 2, 3, 4)				

Table 4

References. (1) W. Zheng et al. (2009b); (2) W. Zheng et al. (2006a); (3) V. Buch & J. P. Devlin (1991); (4) C. M. Tonauer et al. (2021); (5) J. S. Holt et al. (2004); (6) W. Zheng et al. (2008); (7) W. Zheng et al. (2009a); (8) W. Zheng & R. I. Kaiser (2010); (9) G. Socrates (2004).

Figure 8. Infrared spectra of water–ammonia (H_2O-NH_3) ice mixtures before (top) and after (middle) irradiation at 40 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 4. L indicates libration.

Figure 9. Infrared spectra of water-ammonia (H_2O-NH_3) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 4. L indicates libration.

 Table 5

 Infrared Absorption Features of Water–Carbon Monoxide ($H_2O^{-13}CO$) Ice Mixtures before and after Irradiation at 20 and 10 K

20 K			10 K			
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Assignment	Reference
		Position (cm ⁻¹)			-	
5271	5264		5250	5255	$v_{d(O-H)} + v_1 + v_2/v_{d(O-H)} + v_2$ + v_3 (H ₂ O)	(1, 2, 3)
5080	5128		5069	5104	$v_1 + v_3/v_2 + v_3$ (H ₂ O)	(1, 2, 3)
	4979				$2v_1 + v_3 ({}^{13}\text{CO}_2)$	(5, 6, 8)
	4870				$v_1 + 2v_2 + v_3 ({}^{13}\text{CO}_2)$	(5, 6, 8)
	4517			4673, 4515	?	••••
				4284	$v_3 + v_4 (^{13}\text{CH}_4),$	(8, 9)
4158	4160		4156		$2v_1$ (¹³ CO)	(7, 8, 11)
				4145	$v_1/v_3 + v_L (H_2O)$	(1, 2, 3, 4)
3655			3621		$v_{d(O-H)}$	(1, 2, 3)

			(Continu	ied)		
	20 K			10 K		
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Assignment	Reference
		Position (cm ⁻¹)				
	3621			3622	$v_1 + v_3 ({}^{13}\text{CO}_2)$	
3426, 3273	•••	•••	3401, 3242		v_{1}/v_{3} (H ₂ O)	(1, 2, 3)
	3649, 3527, 3404,	3447, 3418,		3647, 3443, 3381, 3264,	O-H stretch	(8, 11)
	3239, 3098	3207, 3026		3229, 3126	12 ~ ~ ~	
•••	2984, 2841, 2726, 2566	2959, 2926, 2866	•••	2973, 2828, 2544	¹³ C–H stretch	(8, 11)
	2346			2344	v ₃ (CO ₂)	(5, 6, 8)
	2273			2272	$v_3 ({}^{13}\text{CO}_2)$	(5, 6, 8)
2204			2201		$v_2 + v_L (H_2O)$	(1, 2, 3)
	2166				${}^{13}C \equiv {}^{13}C$ stretch	(7, 8, 11)
2139			2139		<i>v</i> ¹ (CO)	(6, 7, 8, 11)
2090	2090		2090	2090	$v_1 ({}^{13}\text{CO})$	(6, 7, 8, 11)
2039	2038		2038	2038	$v_1 ({}^{13}C{}^{18}O)$	(6, 7, 8, 11)
	1680, 1675,	1736, 1705		1680, 1667, 1621	¹³ C=O stretch	(8, 11)
	1633, 1596					
1638			1651		v ₂ (H ₂ O)	(1, 2, 3)
	1499			1499	v_3 (H ₂ ¹³ CO)	(8, 10)
	1458, 1371, 1274	1507		1457, 1476, 1417, 1269, 1201	$O-H/^{13}C-H$ deformation	(8, 11)
				1295	$v_4 ({}^{13}\text{CH}_4)$	(8, 9)
	1010			1121, 1000	¹³ C–O stretch	(8, 11)
780			797		$v_{\rm L}$ (H ₂ O) libration	(1, 2, 3)

Table 5

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed. ? in column (6) means these peaks are difficult to assign. References. (1) W. Zheng et al. (2009b); (2) W. Zheng et al. (2006a); (3) V. Buch & J. P. Devlin (1991); (4) C. M. Tonauer et al. (2021); (5) P. A. Gerakines & R. L. Hudson (2015); (6) H. Carrascosa et al. (2019); (7) C. J. Bennett et al. (2009); (8) A. M. Turner et al. (2021a); (9) C. J. Bennett et al. (2006); (10) M. M. Wohar & P. W. Jagodzinski (1991); (11) G. Socrates (2004).

40 K			10 K		
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference
	Position (c	m^{-1})			
6750	•••	6735		$2v_1/2v_3$ (H ₂ O)	(1, 2, 3, 4)
5279		5277	5256	$v_{d(O-H)} + v_1 + v_2/v_{d(O-H)} + v_2 + v_3 (H_2O)$	(1, 2, 3, 4)
5101	5104	5088	5104	$v_1 + v_3/v_2 + v_3$ (H ₂ O)	(1, 2, 3, 4)
4981	4983	4979	4977	$2v_1 + v_3 ({}^{13}\text{CO}_2)$	(5, 6)
4871	4876	4875	4871	$v_1 + 2v_2 + v_3 ({}^{13}\text{CO}_2)$	(5, 6)
3649		3651		V _d (O-H)	(1, 2, 3, 4)
3624	3623	3624	3623	$v_1 + v_3 ({}^{13}\text{CO}_2)$	(5, 6)
3426, 3273		3401, 3242		v_{1}/v_{3} (H ₂ O)	(1, 2, 3, 4)
	3632, 3479, 3396, 3244, 3118		3635, 3485, 3386, 3256	O-H stretch	(8, 9)
	2934, 2588, 2551		2932, 2597, 2578	¹³ C–H stretch	(8, 9)
2348	2349	2344	2351	v ₃ (CO ₂)	(5, 6)
2271	2271	2270	2269	$v_3 ({}^{13}\text{CO}_2)$	(5, 6)
2206		2207		$v_2 + v_L (H_2O)$	(1, 2, 3, 4)
	2092		2092	$v_1 (^{13}CO)$	(6, 7)
	1665, 1566		1655, 1563	¹³ C=O stretch	(8, 9)
1645		1643		v ₂ (H ₂ O)	(1, 2, 3, 4)
	1473, 1371, 1282		1467, 1371, 1281	$O-H/^{13}C-H$ deformation	(8, 9)
805	831	803	832	$v_{\rm L}$ (H ₂ O) libration	(1, 2, 3, 4)
640		646		$v_2 ({}^{13}\text{CO}_2)$	(5, 6)

 Table 6

 Infrared Absorption Features of Water–Carbon Dioxide ($H_2O-{}^{13}CO_2$) Ice Mixtures before and after Irradiation at 40 and 10 K

References. (1) W. Zheng et al. (2009b); (2) W. Zheng et al. (2006a); (3) V. Buch & J. P. Devlin (1991); (4) C. M. Tonauer et al. (2021); (5) P. A. Gerakines & R. L. Hudson (2015); (6) H. Carrascosa et al. (2019); (7) C. J. Bennett et al. (2009); (8) W. Zheng & R. I. Kaiser (2007b); (9) G. Socrates (2004).

12

Figure 10. Infrared spectra of water-carbon monoxide $(H_2O^{-13}CO)$ ice mixtures before (top) and after (middle) irradiation at 20 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 5. L and d indicate libration and dangling, respectively.

(CASINO 2.42; D. Drouin et al. 2007), the maximum depths of the electron penetration were determined to be around 600 ± 50 nm, which is less than the ice thickness of 850 ± 50 nm, thus avoiding interaction between high-energy electrons and the silver wafer. The dose accumulation within processed ices was controlled to be $82 \pm 10 \text{ eV} \text{ amu}^{-1}$ (C. Zhang et al. 2023b, 2024). Note that, to enable a comparison between our results and the dose accumulation of the TNO surface, we used the unit of the deposited dose in eV amu⁻¹, which is widely adopted in the astronomy community (C. J. Bennett et al. 2013; A. Yeghikyan 2017; E. Quirico et al. 2023). This unit can be converted to eV molecule⁻¹, used in the astrochemistry community by multiplying the units of $eV amu^{-1}$ by the molecular mass of the reactants, e.g., $18 \text{ amu molecule}^{-1}$ for water. Objects in the TNO space undergo continuous exposure to ionizing radiation including

ultraviolet (UV) photons, charged particles originating from solar winds, and GCRs (R. E. Johnson 1991; J. F. Cooper et al. 2003). Among those sources of ionizing radiation, charged particles consist of some 90% protons (H⁺) and 1%-10% helium nuclei (He²⁺), with solar wind particles typically having energies in the range of a few keV and GCR particles reaching energies in the hundreds of MeV (R. E. Johnson 1990; G. J. Golabek & M. Jutzi 2021). The UV radiation exhibits a flux of about 10^3 photons cm⁻² s⁻¹ with energies lower than 20.0 eV (S. S. Prasad & S. P. Tarafdar 1983). The chemistry of small TNO surfaces is predominantly controlled by secondary electrons, generated by ionizing radiation penetrating ices. Essentially, implanted protons transfer their kinetic energy to the electronic system of target molecules, leading to the generation of electrons with energies up to a few keV (G. Strazzulla et al. 2003; C. J. Bennett et al. 2005). The

Figure 11. Infrared spectra of water-carbon monoxide $(H_2O^{-13}CO)$ ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 5. L and d indicate libration and dangling, respectively.

electronic linear energy transfer of MeV protons to molecules within such ices exhibits a similar value of a few keV μ m⁻¹ as the 5 keV electrons used in the present experiments (B. M. Jones & R. I. Kaiser 2013). In addition, previous research has shown that the classes of irradiation products from interstellar ices is weakly dependent on the type of radiation source, whether electrons, heavy ions, or UV photons (G. A. Baratta et al. 2002; G. M. Muñoz Caro et al. 2014; M. J. Abplanalp et al. 2018; C. R. Arumainayagam et al. 2019), even though different radiation sources can lead to various relative abundances of products from irradiated interstellar ices (G. M. Muñoz Caro et al. 2014; D. V. Mifsud et al. 2023). Our laboratory experiments mimic the formation of complex products in molecular ices at low temperatures through charged particles via electronic energy-loss processes on airless TNOs. After the irradiation, temperature-programmed desorption studies were carried out by heating the irradiated ices to 320 K at a rate of 1 K min⁻¹. The functional groups involved in ices and radiolysis products were analyzed by a Fourier transform infrared (FTIR) spectrometer (Thermo Fisher Scientific, Nicolet 6700 Spectrometer, liquid nitrogen-cooled MCTB detector). The FTIR spectrometer was operated in the absorption–reflection–absorption mode with a reflection angle of 45° and monitored the infrared signals in the range of $6000-650 \text{ cm}^{-1}$ (1.67–15.38 μ m) with a resolution of 4 cm⁻¹. The near-infrared spectra (10,000–2000 cm⁻¹; 1–5 μ m) were also recorded to cover maximum astronomical observations of TNOs. The ratios of mixed ices were obtained by estimating the column densities of individual components from the infrared spectra of pristine ice mixtures through a modified

Figure 12. Infrared spectra of water-carbon dioxide $(H_2O^{-13}CO_2)$ ice mixtures before (top) and after (middle) irradiation at 40 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 6. L and d indicate libration and dangling, respectively.

Lambert–Beer relationship (J. L. Hollenberg & D. A. Dows 1 961; C. J. Bennett et al. 2004). It is important to note that the absorbance of strong bands is not guaranteed to be linear with respect to ice thickness for thicker ice due to the optical interference effect in absorption–reflection–absorption spectroscopy (B. D. Teolis et al. 2007). However, this effect can be circumvented by selecting weak peaks because their band strengths still have a linear relationship with the amount of ice deposited (K. I. Öberg et al. 2009; A. M. Turner et al. 2015). The bands and corresponding absorption coefficients used here are of water (v_2 at 1664 cm⁻¹, 1.2×10^{-17} cm molecules⁻¹), methane (v_4 at 1294 cm⁻¹, 8.0×10^{-18} cm molecules⁻¹), carbon monoxide ($2v_1$ at 4156 cm⁻¹, 7.4×10^{-20} cm molecules⁻¹), carbon dioxide ($v_1 + v_3$ at 3624 cm⁻¹, 1.8×10^{-18} cm molecules⁻¹), and

methanol (v_7 at 1118 cm⁻¹, 1.9 × 10⁻¹⁸ cm molecules⁻¹) (M. Bouilloud et al. 2015; R. L. Hudson et al. 2022, 2024; P. A. Gerakines et al. 2023).

3. Results and Discussion

3.1. Neat Ices

We first present the infrared spectra results of pure H₂O and NH₃, and the spectra of ¹³CH₄, ¹³CO, ¹³CO₂, and ¹³CH₃OH can be found in our previous reports (C. Zhang et al. 2023b, 2024, 2025b). For the H₂O, before irradiation (ices 1 and 2), both spectra at 40 and 10 K (Figures 2 and 3, Table 2) are dominated by the absorptions of amorphous water, including the broad ν_1/ν_3 bands between 3600 and 3000 cm⁻¹, the asymmetric ν_2 band at

Figure 13. Infrared spectra of water-carbon dioxide $(H_2O^{-13}CO_2)$ ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 6. L and d indicate libration and dangling, respectively.

1664 cm⁻¹, the $\nu_{\rm L}$ band at 802 cm⁻¹, the overtone $2\nu_1/2\nu_3$ between 7200 and 6000 cm⁻¹, and the combination modes $\nu_1 + \nu_2/\nu_3 + \nu_2$ at 5075 cm⁻¹ and $\nu_2 + \nu_{\rm L}$ at around 2208 cm⁻¹ (W. Zheng et al. 2009b; T. Bartels-Rausch et al. 2012; E. F. van Dishoeck et al. 2013; C. M. Tonauer et al. 2021). Weak absorptions from dangling OH bonds at 3716 and 3693 cm⁻¹ corresponding to the two-coordinated and threecoordinated oxygen atoms are also observed (V. Buch & J. P. Devlin 1991; J. A. Noble et al. 2024). After irradiation, the one new band at 2851 cm⁻¹ belongs to H₂O₂ (W. Zheng et al. 2006a). However, this band is not observable in the 40 K spectrum (ice 1) since the higher irradiation temperature can decrease the yield of H₂O₂ product and lead to an amount lower than the detection limitation (W. Zheng et al. 2006b). No residue appears in the 320 K spectrum because all products

sublimate with solid water at about 180 K (W. Zheng et al. 2006a).

For NH₃ (Figures 4 and 5, Table 2), the fundamental vibration modes appear at 3370 cm^{-1} (ν_3), 3212 cm^{-1} (ν_1), 1626 cm^{-1} (ν_4), and 1074 cm^{-1} (ν_2) along with the overtone at 6514 cm^{-1} ($2\nu_1$), and the combination modes at 6100 ($\nu_2 + \nu_3 + \nu_4$), 4995 ($\nu_3 + \nu_4$), 4476 ($\nu_2 + \nu_3$), and 4334 ($\nu_1 + \nu_2$) (J. S. Holt et al. 2004; W. Zheng & R. I. Kaiser 2007a; A. Zanchet et al. 2013; J. E. Roser et al. 2021; R. L. Hudson et al. 2022). The irradiated NH₃ at both temperatures presents a significant decrease in absorbance. This suggests that most ammonia molecules are destroyed by energetic electron irradiation to form products such as diazene isomers (cis-HN=NH, 3048 cm^{-1}; N=NH_2, 2774 cm^{-1}), hydrogen azide (HN₃, 2087 cm^{-1}), and molecular

Figure 14. Infrared spectra of water-methanol ($H_2O^{-13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 40 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 7. L indicates libration.

nitrogen (N₂, 2328 cm⁻¹), as listed in Table 2 (C. S. Jamieson et al. 2005; W. Zheng et al. 2008; P. Parent et al. 2009; M. J. Loeffler & R. A. Baragiola 2010; V. Bordalo et al. 2013; R. Martín-Doménech et al. 2018; D. Torres-Díaz et al. 2024). The presence of hydrazine (N₂H₄) has also been confirmed in the irradiated ammonia ices via mass spectrum without determination here because of the overlap between its bands with ammonia in the infrared spectra (W. Zheng et al. 2008). The N₂ absorption is only observed in the irradiated at 40 K (ice 4), possibly because this molecule sublimated at 40 K (ice 3; W. Zheng et al. 2011). Similar to water, no residue signal is observed in the 320 K spectra.

3.2. Binary Ice Mixtures

The infrared data of water-bearing binary ice mixtures are shown in Figures 6-15, and the peak assignments are

compiled in Tables 3-7. Adding methane to pure water ice (ices 5 and 6) changes the position of dangling OH bonds from $3716 \text{ to } 3693 \text{ cm}^{-1} \text{ and } 3683 \text{ to } 3660 \text{ cm}^{-1}$ (Figures 6 and 7, Table 3), as supported by M. E. Palumbo (2006), Ó. Gálvez et al. (2009), and J. He et al. (2018). The combination mode $v_{\rm d(O-H)} + v_1 + v_2/v_{\rm d(O-H)} + v_2 + v_3$ at 5324 shifts to \sim 5290 cm⁻¹ (P. D. Tribbett et al. 2021). The irradiated ice mixtures appear to produce more complex profiles with identifiable products of carbon dioxide $(^{13}CO_2, 2275 \text{ cm}^{-1})$, carbon monoxide (13 CO, 2090 cm $^{-1}$), methanol (13 CH₃OH, $4387/1003 \text{ cm}^{-1}$), and formaldehyde (H¹³₂CO, 1499 cm⁻¹) along with broad bands of the hydroxyl group (O-H) between 3700 and 3000 cm^{-1} , the hydrocarbyl group ($^{13}\text{C-H}$) between 3000 and 2700 cm⁻¹, the carbonyl group ($^{13}C=O$) at about 1679 cm⁻¹, and an overlap band of O-H bending and ¹³C-H deformation between 1500 and 1200 cm⁻¹

Figure 15. Infrared spectra of water-methanol ($H_2O^{-13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 7. L indicates libration.

Table 7Infrared Absorption Features of Water–Methanol ($H_2O^{-13}CH_3OH$) Ice Mixtures before and after Irradiation at 40 and 10 K

20 K			10 K				
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position	(cm^{-1})				
5117	5087		5121	5069		$v_1 + v_2/v_2 + v_3$ (H ₂ O)	(1, 2, 3)
	4664			4661, 4512		?	
4519			4518			$v_2 + v_3 (^{13}\text{CH}_4)$	(4, 5, 9)
4392	4405		4389	4398		$v_{2/9} + v_{4/6/10}$ (¹³ CH ₃ OH)	(4, 5)
	4284			4284		$v_3 + v_4 ({}^{13}\text{CH}_4)$	(4, 5, 9)
4276			4274			$v_{2/9} + v_4 (^{13}\text{CH}_3\text{OH})$	(4, 5)
•••	4196			4196		$v_1 + v_4 (^{13}\text{CH}_4)$	(4, 5, 9)
•••	4142			4142		$v_1/v_3 + v_L (H_2O)$	(1, 2, 3)
•••	3621			3621		$v_1 + v_3 ({}^{13}\text{CO}_2)$	(5, 6, 7)

	20 K			10 K			
Before		Residue	Before		Residue		
Irradiation	After Irradiation	at 320 K	Irradiation	After Irradiation	at 320 K	Assignment	Reference
		Position	(cm^{-1})				
	3624, 3473, 3387,	3450,	•••	3629, 3468, 3391,	3370,	O-H stretch	(4, 5, 11)
	3294, 3212, 2956, 2860, 2714, 2574	3290, 3123		3294, 3146, 2879, 2701, 2556	3262, 3059		
3501, 3420,			3500, 3430,			v (O-H) of water	(1, 2, 3, 4, 5)
3382,			3378,			and methanol	
3252, 3108			3262, 3104			10	
	2999, 2963, 2927, 2873, 2824	2939, 2870		2997, 2962, 2933, 2874, 2820	2949, 2871	¹³ C–H stretch	(4, 5, 11)
2956			2956	•••	•••	v_2 (¹³ CH ₃ OH)	(4, 5)
2928			2928		•••	v ₉ (¹³ CH ₃ OH)	(4, 5)
2908			2910		•••	$2v_4$ (¹³ CH ₃ OH)	(4, 5)
2825			2824			v_3 (¹³ CH ₃ OH)	(4, 5)
2597			2597			$v_4 + v_{7/11} + v_{4/6/10}$ (¹³ CH ₃ OH)	(4, 5)
2526			2526			$v_6 + v_{11} ({}^{13}\text{CH}_3\text{OH})$	(4, 5)
2464			2464			$v_6 + v_8 (^{13}\text{CH}_3\text{OH})$	(4, 5)
	2342		2343			v ₃ (CO ₂)	(5, 6, 7)
	2275		2275			v_3 (¹³ CO ₂)	(5, 6, 7)
2226			2228		•••	2v _{7/11} (¹³ CH ₃ OH)	(4, 5)
	2091			2090	•••	v_1 (¹³ CO)	(4, 5, 7, 8)
2012			2013		•••	$2v_8$ (¹³ CH ₃ OH)	(4, 5)
	1675, 1656, 1637, 1543	1680		1676, 1634, 1619		¹³ C=O stretch	(4, 5, 11)
1672			1672			v_2 (H ₂ O)	(1, 2, 3)
	1499		•••	1499		$v_3 (H_2^{13}CO)$	(4, 5, 10)
1478			1477			v ₄ (¹³ CH ₃ OH)	(4, 5)
1461			1460		•••	v_{10} (¹³ CH ₃ OH)	(4, 5)
1420			1419		•••	v ₅ (¹³ CH ₃ OH)	(4, 5)
	1458, 1418, 1377, 1279	1448, 1337		1458, 1421, 1377, 1279		O-H/ ¹³ C-H deformation	(4, 5, 11)
1340			1338			$v_6 ({}^{13}CH_3OH)$	(4, 5)
	1295			1295		$v_4 ({}^{13}\text{CH}_4)$	(4, 5, 9)
1118			1116			v ₇ (¹³ CH ₃ OH)	(4, 5)
	1117, 1069, 1005			1111, 1062, 1004		¹³ C–O stretch	(4, 5, 11)
1008			1007			v ₈ (¹³ CH ₃ OH)	(4, 5)
833			833			v_{12} (¹³ CH ₃ OH)	(4, 5)
	830			816		¹³ C–H out-of-plane deformation	(4, 5, 11)
809			803			$v_{\rm I}$ (H ₂ O) libration	(1, 2, 3)

Table 7(Continued)

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed. ? in column (7) means these peaks are difficult to assign. References. (1) W. Zheng et al. (2009b); (2) W. Zheng et al. (2006a); (3) C. M. Tonauer et al. (2021); (4) C. J. Bennett et al. (2007); (5) C. Zhu et al. (2020); (6) P. A. Gerakines & R. L. Hudson (2015); (7) H. Carrascosa et al. (2019); (8) C. J. Bennett et al. (2009); (9) C. J. Bennett et al. (2006); (10) M. M. Wohar & P. W. Jagodzinski (1991); (11) G. Socrates (2004).

		Table 8		
Infrared Absorption F	Features of Methane-Ammonia	(¹³ CH ₄ -NH ₃) Ice Mixtures	before and after	Irradiation at 20 and 10 K

	20 K			10 K			
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position ((cm^{-1})				
6529			6534			$2v_1$ (NH ₃)	(3, 4)
5963			5964			$2v_3$ (¹³ CH ₄)	(1, 2)
5778			5779			$v_1 + v_3 ({}^{13}\text{CH}_4)$	(1, 2)
5536			5537			$v_3 + 2v_4 ({}^{13}\text{CH}_4)$	(1, 2)
5000	5001		5001	5001		$v_3 + v_4 (\text{NH}_3)$	(3, 4)
4515			4515			$v_2 + v_3 ({}^{13}\text{CH}_4)$	(1, 2)

	20 K			10 K			
Before			Before				
Irradiation	After Irradiation	Residue at 320 K	Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position (cm^{-1})				
4473	4471	•••	4473	4486		$v_2 + v_3 (\text{NH}_3)$	(3, 4)
4279	4281		4280	4282		$v_3 + v_4 (^{13}\text{CH}_4)$	(1, 2)
4191			4191			$v_1 + v_4 ({}^{13}\text{CH}_4)$	(1, 2)
	4132			4125		¹³ C≡N overtone	(5, 6)
3825		•••	3825			$3v_4 (^{13}CH_4)$	(1, 2)
	3330, 3180	3415, 3331, 3176		3435, 3301, 3183	3324, 3200	N-H stretch	(4, 7)
3368	3363		3368	3363		v ₃ (NH ₃)	(3, 4)
3208			3208			$v_1 (NH_3)$	(3, 4)
2996	2997		2997	2997		v_3 (¹³ CH ₄)	(1, 2)
	2990, 2957, 2932,	2937, 2907, 2896,		2962, 2932,	2970, 2954, 2919,	¹³ C-H stretch	(1, 7)
	2888, 2820	2863, 2760		2877, 2728	2863, 2665		
2899		•••	2899			$v_1 ({}^{13}\text{CH}_4)$	(1, 2)
2806		•••	2806			$v_2 + v_4 (^{13}\text{CH}_4)$	(1, 2)
2577		•••	2577			$2v_4 (^{13}CH_4)$	(1, 2)
2426	2453	2559, 2420, 2326	2425	2446	2439, 2320	v (N–H ⁺)	(4)
	2158	2127		2157	2126	¹³ C≡N stretch	(5, 6, 7)
	2100	2091		2100	2089	v (¹³ CN ⁻)	(5, 6, 7)
	2039	2040		2039	2041	¹³ C=N=N stretch	(5, 6, 7)
	1689	•••		1687		¹³ C=N stretch	(5, 6, 7)
1628	1627		1625	1627		$v_4 (NH_3)$	(3, 4)
	1593, 1547, 1451	1597, 1546,		1593, 1483, 1441	1586, 1483	N-H deformation	(5, 6, 7)
	1348	1443, 1337		1341	1320	¹³ C-H deformation	(5, 6, 7)
1292	1295		1290	1295		$v_4 ({}^{13}CH_4)$	(1, 2)
	1272, 1060	977		1082	1059, 1027	¹³ C-N stretch	(5, 6, 7)
1076			1076			v ₂ (NH ₃)	(3, 4)
	813			819		¹³ C-H out-of-plane bending	(5, 6, 7)

 Table 8

 (Continued)

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed.

References. (1) M. J. Abplanalp et al. (2018); (2) C. J. Bennett et al. (2006); (3) J. S. Holt et al. (2004); (4) W. Zheng et al. (2008); (5) F. A. Vasconcelos et al. (2020); (6) M. H. Moore & R. L. Hudson (2003); (7) G. Socrates (2004).

Table 9Infrared Absorption Features of Methane–Carbon Monoxide ($^{13}CH_4$ – ^{13}CO) Ice Mixtures before and after Irradiation at 20 and 10 K

	20 K			10 K			
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position (cm^{-1})				
5971		•••	5971	•••	•••	$2v_3$ (¹³ CH ₄)	(1, 2)
5784			5784			$v_1 + v_3 (^{13}\text{CH}_4)$	(1, 2)
5543	•••		5543			$v_3 + 2v_4 (^{13}\text{CH}_4)$	(1, 2)
	4851			5131		$v_1 + v_2/v_2 + v_3$ (H ₂ O)	(9, 10)
	4650, 4508			4653, 4508		?	
4521	•••		4521			$v_2 + v_3 (^{13}\text{CH}_4)$	(1, 2)
	•••			4398, 4337		¹³ CH ₃ OH combination	(3)
4284	4281		4284	4281		$v_3 + v_4 ({}^{13}\text{CH}_4)$	(1, 2)
4194	4192		4195	4192		$v_1 + v_4 ({}^{13}\text{CH}_4)$	(1, 2)
4155			4155			$2v_1$ (¹³ CO)	(4)
	4146, 4137			4148, 4139		?	
3827	•••		3827			$3v_4$ (¹³ CH ₄)	(1, 2)
	3619					$v_1 + v_3 ({}^{13}\text{CO}_2)$	
	3652, 3526, 3401,	3547, 3478,		3642, 3521,	3521, 3401,	O-H stretch	(8)
	3281, 3214, 3201,	3380, 3215		3401, 3262	3265, 3116		
	3072	3065		3079	3065	Aromatic ¹³ C-H stretch	(7, 8)
3000	2996		3000	2997		$v_3 ({}^{13}CH_4)$	(1, 2)

			(-				
	20 K			10 K			
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position (cm^{-1})				
	2960, 2930, 2920, 2870, 2830, 2748, 2604	2956, 2922, 2913, 2866, 2853, 2714		2960, 2927, 2886, 2870, 2720, 2592	2956, 2940, 2922, 2864, 2876	¹³ C–H stretch	(8)
2905			2905			$v_1 ({}^{13}CH_4)$	(1, 2)
2808			2809			$v_2 + v_4 ({}^{13}\text{CH}_4)$	(1, 2)
2579			2580			$2v_4$ (¹³ CH ₄)	(1, 2)
	2340			2341		v_3 (CO ₂)	(5, 6)
	2274			2274		v_3 (¹³ CO ₂)	(5, 6)
2137			2137		•••	v_1 (CO)	(4, 6)
2089	•••		2089			v_1 (¹³ CO)	(4, 6)
2038			2038		•••	$v_1 ({}^{13}C{}^{18}O)$	(4, 6)
		2041				Conjugated ${}^{13}C \equiv {}^{13}C$ stretch	(7, 8)
	1679, 1665, 1584	1677, 1667, 1554		1679, 1659, 1569, 1479	1669, 1614	¹³ C=O stretch	(8)
	1458, 1438, 1366	1447, 1367		1455, 1435, 1367	1451, 1361	$O-H/^{13}C-H$ deformation	(8)
1292	1294		1292	1295		$v_4 (^{13}CH_4)$	(1, 2)
	1008	1143		1002	1152	$^{13}C-O$ stretch	(8)
	827			902		¹³ C–H out-of-plane bending	(8)

Table 9 (Continued)

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed. ? in column (7) means these peaks are difficult to assign. **References.** (1) M. J. Abplanalp et al. (2018); (2) C. J. Bennett et al. (2006); (3) C. Zhang et al. (2024); (4) C. J. Bennett et al. (2009); (5) P. A. Gerakines & R. L. Hudson (2015); (6) H. Carrascosa et al. (2019); (7) M. J. Abplanalp et al. (2019a); (8) G. Socrates (2004); (9) W. Zheng et al. (2009b); (10) C. M. Tonauer et al. (2021).

	initialed rissorption reality	es of Mediane Ca	boli Bloxide (Cl		erore and arter m	adiation at 20 and 10 R	
	20 K			10 K			
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position	(cm^{-1})				
5972		•••	5970		•••	$2v_3$ (¹³ CH ₄)	(3, 4)
5784			5783			$v_1 + v_3 (^{13}\text{CH}_4)$	(3, 4)
5542			5542			$v_3 + 2v_4 (^{13}\text{CH}_4)$	(3, 4)
				5158		$v_1 + v_2/v_2 + v_3$ (H ₂ O)	(1, 2)
4979	4977		4979	4977		$2v_1 + v_3 (^{13}\text{CO}_2)$	(7, 8, 9)
4872	4872		4872	4868		$v_1 + 2v_2 + v_3 (^{13}\text{CO}_2)$	(7, 8, 9)
4719			4719			$4v_2 + v_3 (^{13}\text{CO}_2)$	(7, 8, 9)
	4660, 4511			4656, 4512		?	
4523			4523			$v_2 + v_3 (^{13}\text{CH}_4)$	(3, 4)
4285	4283		4284	4286		$v_3 + v_4 (^{13}\text{CH}_4)$	(3, 4)
4195	4195		4195	4195		$v_1 + v_4 (^{13}\text{CH}_4)$	(3, 4)
	4160			4159		$2v_1$ (¹³ CO)	(5, 6, 8)
3624	3623		3624	3623		$v_1 + v_3 (^{13}\text{CO}_2)$	(7, 8, 9)
3509	3507		3509	3507		$2v_2 + v_3 (^{13}CO_2)$	(7, 8, 9)
	3641, 3510, 3399,	3517, 3408,		3638, 3527, 3394,	3508, 3408,	O-H stretch	(5, 11)
	3251, 3075	3306, 3100		3234, 3080	3337, 3107		
2999	3000		2999	3000		$v_3 ({}^{13}CH_4)$	(3, 4)
	2968, 2930, 2911,	2934,		2964, 2950, 2871,	2949, 2882	¹³ C-H stretch	(5, 11)
	2830, 2711, 2586	2872, 2735		2836, 2812, 2542			
2905			2905			$v_1 ({}^{13}CH_4)$	(3, 4)
2811	•••		2810	•••		$v_2 + v_4 (^{13}\text{CH}_4)$	(3, 4)
2581			2581			$2v_4$ (¹³ CH ₄)	(3, 4)
2348			2348			v ₃ (CO ₂)	(7, 8, 9)
2297			2297			$v_{\rm LO} ({}^{13}{\rm CO}_2)$	(7, 8, 9)

Table 10Infrared Absorption Features of Methane–Carbon Dioxide (${}^{13}CH_4-{}^{13}CO_2$) Ice Mixtures before and after Irradiation at 20 and 10 K

			(Con	lullued)			
	20 K			10 K			
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
2267	2274	•••	2267	2274		v ₃ (¹³ CO ₂)	(7, 8, 9)
	2091			2091		$v_1 ({}^{13}CO)$	(5, 6, 8)
	1681, 1665, 1579	1688, 1464		1681, 1665, 1629, 1595	1674, 1579	¹³ C=O stretch	(5, 11)
	1499			1499		v_3 (H ₂ ¹³ CO)	(5, 10)
	1262			1370, 1261		O-H/ ¹³ C-H deformation	(5, 11)
1293	1295	1285	1293	1295		$v_4 (^{13}CH_4)$	(3, 4)
	1003			1005	•••	¹³ C-O stretch	(5, 11)
651, 637			651, 637			$v_2 ({}^{13}\text{CO}_2)$	(7, 8, 9)

Table 10(Continued)

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed. ? in column (7) means these peaks are difficult to assign. **References.** (1) W. Zheng et al. (2009b); (2) C. M. Tonauer et al. (2021); (3) M. J. Abplanalp et al. (2018); (4) C. J. Bennett et al. (2006); (5) C. Zhu et al. (2018); (6) C. J. Bennett et al. (2009); (7) P. A. Gerakines & R. L. Hudson (2015); (8) H. Carrascosa et al. (2019); (9) I. R. Cooke et al. (2016); (10) M. M. Wohar & P. W. Jagodzinski (1991); (11) G. Socrates (2004).

Figure 16. Infrared spectra of methane–ammonia (${}^{13}CH_4-NH_3$) ice mixtures before (top) and after (middle) irradiation at 20 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 8.

Figure 17. Infrared spectra of methane–ammonia ($^{13}CH_4$ –NH₃) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 8.

These functional groups are potentially from organic molecules, including ethane $({}^{13}C_2H_6)$, ethylene $({}^{13}C_2H_4)$, acetylene $({}^{13}C_2H_2)$, methylacetylene $({}^{13}CH_3^{13}C\equiv{}^{13}CH)$, ethyl methyl ether $({}^{13}CH_3O^{13}CH_2^{13}CH_3)$, propane $({}^{13}C_3H_8)$, methanol $({}^{13}CH_3OH)$, ethanol $({}^{13}CH_3^{13}CH_2OH)$, ketene $(H_2^{13}C^{13}CO)$, acetaldehyde $({}^{13}CH_3^{13}CHO)$, dimethyl ether $({}^{13}CH_3O^{13}CH_3)$, and methyl hydroperoxide $({}^{13}CH_3OOH)$ (G. A. Baratta et al. 2003; A. Wada et al. 2006; R. Hudson et al. 2008; A. Bergantini et al. 2017, 2018b; L. Krim & M. Jonusas 2019; C. Mejía et al. 2020; D. V. Mifsud et al. 2023). These products are volatile under ultrahigh vacuum conditions, and therefore no infrared signal is observed in the 320 K spectra. Except for absorptions of water and ammonia, the H_2O-NH_3 ice mixtures (ices 7 and 8) display a distinct band at around 2921 cm⁻¹, which is likely from the formation

of a water-ammonia complex $(H_2O \cdot NH_3)$ during codeposition (W. Zheng et al. 2009a) (Figures 8 and 9, Table 4). The dangling OH bond in the H_2O-NH_3 ice mixtures is a broad band centered at 3698 cm⁻¹. After irradiation, the infrared spectra reveal a new band at 1700 cm⁻¹ consistent with N-H deformation and is from hydroxylamine (NH₂OH) produced via electron processing (M. H. Moore et al. 2007; W. Zheng et al. 2009a; M. J. Loeffler et al. 2010; W. Zheng & R. I. Kaiser 2010; V. Bordalo et al. 2013). The spectra of pristine $H_2O-^{13}CO$ ice mixtures (ices 9 and

The spectra of pristine H₂O–¹³CO ice mixtures (ices 9 and 10) show dominant peaks from ¹³CO at 2090 cm⁻¹ and its overtone $(2\nu_1)$ near 4158 cm⁻¹, and absorptions from water ices (Figures 10 and 11, Table 5). The dangling OH bonds in these spectra are broad centered at 3655 and 3621 cm⁻¹ at 20 and 10 K, respectively. This band has a higher absorbance at

Figure 18. Infrared spectra of methane–carbon monoxide (13 CH₄– 13 CO) ice mixtures before (top) and after (middle) irradiation at 20 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 9.

20 K than at 10 K due to a larger concentration of carbon monoxide. This finding indicates that carbon monoxide could enhance the absorption of dangling OH, and potential implications on the morphological study of water on the interstellar grain surface considering these two molecules are found to be widespread in interstellar ices (J. Bouwman et al. 2007; A. C. A. Boogert et al. 2015; J. He et al. 2018, 2019; T. Hasegawa et al. 2024; J. A. Noble et al. 2024). After irradiation, the distinct new absorptions are ¹³CO₂ at 2275 and 3621 cm⁻¹, H₂¹³CO at 1499 cm⁻¹, and ¹³CH₄ at 1295 cm⁻¹. Similar to the processed H₂O–¹³CH₄ ice mixtures, the infrared spectra display the hydroxyl group (¹³C–H) between 3700 and 2500 cm⁻¹, the carbonyl group (¹³C=O) at about 1680 cm⁻¹, an overlap band of O–H bending and ¹³C–H deformation between 1500 and 1200 cm⁻¹, and a ¹³C–O stretch

at about 1010 cm^{-1} (G. Socrates 2004). These groups can be prominent for methanol (¹³CH₃OH), ketene (H₂¹³C¹³CO), ethynol (¹³C₂H₂O), glyoxal (H¹³CO¹³CHO), glyceraldehyde (¹³C₃H₆O₃), glyoxylic acid (¹³C₂H₂O₃), formic acid (H¹³COOH), and carbonic acid (H₂¹³CO₃) (Z. Awad et al. 2005; C. J. Bennett et al. 2011; A. Jiménez-Escobar et al. 2016; A. K. Eckhardt et al. 2019; F. Schmidt et al. 2019; M. Tsuge et al. 2020; A. M. Turner et al. 2020; A. M. Turner et al. 2021a; C. H. Huang et al. 2022; J. Wang et al. 2024b). Some weak bands corresponding to the O–H, ¹³C–H, and ¹³C=O groups are observed in the 320 K spectra from the ice mixtures processed at 20 K (ice 9). However, the 320 K spectrum from the ices irradiated at 10 K (ice 10) has no signal. This difference is likely because the higher concentration of carbon monoxide can produce unsaturated carbon chain molecules during irradiation, followed by interactions with hydrogen and oxygen atoms within the ice to form complex organic refractory species

Figure 19. Infrared spectra of methane–carbon monoxide (13 CH₄– 13 CO) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 9.

(C. J. Bennett et al. 2009). The codeposition of water and carbon dioxide molecules at 40 and 10 K (ices 11 and 12) results in prominent absorptions of these two compounds in the spectra (Figures 12 and 13, Table 6), including a broad peak at 3649 cm⁻¹ of the dangling OH bond (K. I. Öberg et al. 2007; W. Zheng & R. I. Kaiser 2007b). The spectra from irradiated $H_2O^{-13}CO_2$ ices exhibit the absorption of ¹³CO at 2092 cm⁻¹ and functional groups of O–H, ¹³C–H, ¹³C=O, and broad overlap bands for O–H and ¹³C–H (G. Socrates 2004). These groups originate from molecules like carbonic acid ($H_2^{13}CO_3$), the hydrocarboxyl radical ($HO^{13}CO$), $H_2^{13}CO$, and $H^{13}COOH$ (P. A. Gerakines et al. 2000; C. Y. R. Wu et al. 2003; C. R. Ponciano et al. 2005; W. Zheng & R. I. Kaiser 2007b; Z. Peeters et al. 2010; S. Pilling et al. 2010b; X. Wang & T. Burgi 2021). No signal is observed at the 320 K spectra of water–carbon dioxide ice mixtures. The dangling

OH features are also observed in the irradiated $H_2O^{-13}CO$ and $H_2O^{-13}CO_2$ ice mixtures, likely from the residual unirradiated ices due to the energy electron penetration depth being less than the thickness of the pristine ices (see Section 2).

For $H_2O^{-13}CH_3OH$ ice mixtures (ices 13 and 14), the spectra before irradiation have noticeable absorptions of these two molecules, including broad bands for the hydroxyl group and the hydrocarbyl group between 3700 and 2600 cm⁻¹ (Figures 14 and 15, Table 7). The absence of the dangling OH signal in these spectra is likely a consequence of the high methanol concentration, considering these features can be detected in a more dilute H_2O-CH_3OH ice mixture with a ratio of 10:1 (R. L. Hudson et al. 2024). In addition, the radiation-driven compaction of microporous ice can also decrease the dangling OH absorptions

Figure 20. Infrared spectra of methane–carbon dioxide (13 CH₄– 13 CO₂) ice mixtures before (top) and after (middle) irradiation at 20 K. The 320 K spectra are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 10. LO indicates longitudinal mode.

(U. Raut et al. 2008; P. R. Behr et al. 2020). After irradiation, more complex absorptions are observed, resulting from a large number of products including ¹³CO₂, ¹³CO, ¹³CH₄, and H₂¹³CO together with functional groups related to O–H, ¹³C–H, ¹³C=O, and ¹³C–O bonds. These functional groups can be combined into complex organic molecules such as polyols and hydroxycarboxylic acids, sugar-related compounds, and so forth (M. H. Moore et al. 1996; C. J. Bennett et al. 2007; A. L. F. de Barros et al. 2014; S. Maity et al. 2015; N. Abou Mrad et al. 2016; N. Sakakibara et al. 2020; C. Zhu et al. 2020; N. E. Soland et al. 2023). Since some products are nonvolatile, related functional groups (hydroxyl group, hydrocarbyl group, and carbonyl group) are also observed in the 320 K spectra. The absorptions of residues at 320 K from processed ice at 40 K show a higher intensity than that from ice irradiated at

10 K, suggesting a temperature-dependence mechanism in the formation of these molecules.

Except for the H₂O⁻¹³CH₄ ice mixtures, which are discussed above, the infrared spectra of additional methanebearing binary ice mixtures are shown in Figures 16–23, along with peak assignments in Tables 8–11. For ¹³CH₄–NH₃ (ices 15 and 16) before irradiation, spectra at 20 and 10 K (Figures 16 and 17, Table 8) have similar profiles and display peaks from methane at 5963 cm⁻¹ ($2\nu_3$), 5778 cm⁻¹ ($\nu_1 + \nu_3$), 5536 cm⁻¹ ($\nu_3 + 2\nu_4$), 4515 cm⁻¹ ($\nu_2 + \nu_3$), 4279 cm⁻¹ ($\nu_3 + \nu_4$), 4191 cm⁻¹ ($\nu_1 + \nu_4$), 3825 cm⁻¹ ($3\nu_4$), 2996 cm⁻¹ (ν_3), 2899 cm⁻¹ (ν_1), 2806 cm⁻¹ ($\nu_2 + \nu_4$), 2577 cm⁻¹ ($2\nu_4$), and 1292 cm⁻¹ (ν_4) (M. J. Abplanalp et al. 2018; C. Zhang et al. 2023b), together with absorptions of ammonia having shifts in different degrees compared to pure ammonia, as

Figure 21. Infrared spectra of methane–carbon dioxide (13 CH₄– 13 CO₂) ice mixtures before (top) and after (middle) irradiation at 10 K. The 320 K spectra are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 10. LO indicates longitudinal mode.

aforementioned. Upon irradiation, the primary bands in the spectra are N–H and ¹³C–H bonds between 350 and 2500 cm⁻¹ along with their deformation vibration modes between 1700 and 1200 cm⁻¹, and weak signals of ¹³C–N stretch near 1080 cm⁻¹ (G. Socrates 2004). The bands at 2158 and 2039 cm⁻¹ suggest the formation of nitriles (¹³C=N) and diazo (¹³C=N=N) compounds (G. Socrates 2004; F. A. Vasconcelos et al. 2020). The weak broad band between these two peaks centered about 2100 cm⁻¹ is from cyanide anion (¹³CN⁻) and azides (N₃⁻) (W. Zheng et al. 2008; Y. S. Kim & R. I. Kaiser 2011; F. d. A. Vasconcelos et al. 2017). In addition, a weak shoulder band at about 1689 cm⁻¹ from the ¹³C=N double bond is also observed (G. Socrates 2004). The formation of these functional groups suggests that complex species such as hydrocarbons, amine, nitriles, imine, and even

nitrogen heteroaromatics are potentially produced through the radiation chemistry within the TNO surface containing methane and ammonia (Y. S. Kim & R. I. Kaiser 2011; M. Förstel et al. 2017; S. Kundu et al. 2017; M. J. Abplanalp et al. 2018, 2019b; F. A. Vasconcelos et al. 2020; A. M. Turner et al. 2021b; A. Canta et al. 2023; C. Zhang et al. 2023a; K. A. Kipfer et al. 2024; J. Wang et al. 2024a). A fraction of these higher molecular weight products remains even warmed up to 320 K, and therefore the absorptions of N–H and ¹³C–H bonds, the peak at 2158 cm⁻¹ of nitriles (¹³C \equiv N), and ¹³C–N stretch bands are observed in their spectra.

The spectra of pristine ice mixtures combining methane with carbon monoxide and carbon dioxide (ices 17–20) only have a few peaks associated with these molecules (Figures 18–21, Tables 9 and 10). After irradiation, these spectra exhibit

Figure 22. Infrared spectra of methane-methanol ($^{13}CH_4 - ^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 20 K. The 320 K spectra are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 11.

similar profiles, which is likely because they consist of the same elements: carbon, oxygen, and hydrogen. Except for products of ${}^{13}CO_2$ and ${}^{13}CO$, the spectra after irradiation of both systems show a set of products with functional groups of O–H, ¹³C–H, ¹³C=O, and ¹³C–O attached to the long carbon chain bones, referring to compounds of hydrocarbons, alcohols, aldehydes, ketenes, carboxylic acids, acetic acid, esters, and carbohydrates, as in previous reports (C. J. Bennett et al. 2005; C. J. Bennett & R. I. Kaiser 2007a; Y. S. Kim & R. I. Kaiser 2010; R. I. Kaiser et al. 2014; S. Maity et al. 2014a; M. J. Abplanalp et al. 2016b, 2019b; A. Bergantini et al. 2018a, 2018d; C. Zhu et al. 2018; C. Zhu et al. 2021; N. F. Kleimeier & R. I. Kaiser 2022). However, the irradiation dose used here is much higher than that in prior studies, leading to more complex products, which are not desorbed even when heating these products to 320 K. Therefore, the relevant functional groups, including O-H, ¹³C-H,

 $^{13}C=O$, and $^{13}C=O$, are also detected in the spectra at 320 K. It is worth noting that the absorbance ratio of ^{-13}C –H to O-H bond-stretching vibrations in the residues from the irradiated ${}^{13}CH_4 - {}^{13}CO$ system (ices 17 and 18) is higher than that in the irradiated ${}^{13}CH_4 - {}^{13}CO_2$ mixtures (ices 19 and 20), and the ¹³C-H feature of aromatic-related molecules are only detected in the ¹³CH₄-¹³CO system. Here, the irradiated carbon monoxide generated unsaturated, long carbon-chained molecules, which facilitates the formation of hydrocarbon molecules through incorporating hydrogen atoms in the ices (C. S. Jamieson et al. 2006b). In contrast, the products of irradiated carbon dioxide are mainly high-order carbon oxides that form O-H bonds by interreacting with hydrogen atoms (C. J. Bennett et al. 2004, 2014; C. S. Jamieson et al. 2006a, 2007b, 2007a, 2008; R. I. Kaiser & A. M. Mebel 2008; C. Zhang et al. 2025b). Although the ${}^{13}CH_4 - {}^{13}CH_3OH$ system (ices 21 and 22) have the same elements as ices composed of Table 11Infrared Absorption Features of Methane–Methanol ($^{13}CH_4 - ^{13}CH_3OH$) Ice Mixtures before and after Irradiation at 20 and 10 K

20 K 10 K							
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position	(cm^{-1})			C	
5969			5964			$2v_2 ({}^{13}CH_4)$	(2, 3)
5781			5779			$v_1 + v_2 ({}^{13}\text{CH}_4)$	(2, 3)
5539			5538			$v_1 + v_3 (CH_4)$ $v_2 + 2v_4 (^{13}CH_4)$	(2, 3)
				5143		$v_1 + v_2/v_2 + v_2$ (H ₂ O)	(1, 12)
	4648			4738 4657		?	(1, 12)
4519			4518	4504		$v_2 + v_2 ({}^{13}\text{CH}_4)$	$(2 \ 3)$
4372			4380			$v_{2/9} + v_{4/6/10}$ (¹³ CH ₂ OH)	(4, 5)
4281	4283		4280	4283		$v_2 + v_4 ({}^{13}\text{CH}_4)$	(2, 3)
4192	4195		4192	4195		$v_3 + v_4 (-3000 H_4)$	(2, 3)
	4134			4147		$2v_1 ({}^{13}CO)$	(4568)
	3619			3619		$v_1 + v_2 ({}^{13}CO_2)$	(4, 5, 7, 8)
	3636, 3469, 3370, 3277, 3211, 3191	3521, 3388 3294		3651, 3521, 3395, 3294, 3236, 3196	3550, 3468, 3391, 3192	O-H stretch	(2, 5, 10)
3491 3468 3405			3405			v_1 (¹³ CH ₂ OH)	(4 5)
3271, 3089	2070	20(5	3253, 3068,				(1, 5)
	3070	3065	•••		•••	stretch	(11)
2998	•••		2998		•••	$v_3 ({}^{13}CH_4)$	(2, 3)
	2994, 2952, 2926, 2870	2946, 2920, 2866		2999, 2962, 2928, 2870	2995, 2955, 2924,	¹³ C–H stretch	(2, 5, 10)
					2863, 2838		
2943	•••		2943			v_2 (¹³ CH ₃ OH)	(4, 5)
2918	•••		2920			$v_9 ({}^{13}CH_3OH)$	(4, 5)
2901	•••		2901		•••	$v_1 ({}^{13}CH_4)$	(2, 3)
2815			2815			v_3 (¹³ CH ₃ OH)	(4, 5)
2610			2597			$v_4 + v_{7/11} + v_{4/6/10}$ (¹³ CH ₃ OH)	(4, 5)
2511	•••		2511			$v_6 + v_{11} (^{13}\text{CH}_3\text{OH})$	(4, 5)
2464			2464			$v_6 + v_8 ({}^{13}\text{CH}_3\text{OH})$	(4, 5)
	2343		•••	2340		v ₃ (CO ₂)	(4, 5, 7, 8)
	2274		•••	2274		$v_3 ({}^{13}\text{CO}_2)$	(4, 5, 7, 8)
2238	•••		2238		•••	$2v_{7/11}$ (¹³ CH ₃ OH)	(4, 5)
•••	2089		•••	2090	•••	v_1 (¹³ CO)	(4, 5, 6, 8)
•••	2038		•••	2039	•••	$v_1 ({}^{13}C{}^{18}O)$	(4, 5, 6, 8)
2021	•••		1897		•••	$2v_8$ (¹³ CH ₃ OH)	(4, 5)
	1680, 1653, 1589, 1569	1669, 1593		1678, 1665, 1614, 1556	1685, 1677, 1552, 1510	¹³ C=O stretch	(2, 5, 10)
	1499			1499		v_3 (H ₂ ¹³ CO)	(4, 5, 9)
1472			1473			v_4 (¹³ CH ₃ OH)	(4, 5)
1458	•••		1458			v_{10} (¹³ CH ₃ OH)	(4, 5)
1439	•••		1420		•••	v ₅ (¹³ CH ₃ OH)	(4, 5)
	1457, 1435, 1365, 1255	1453, 1434, 1365, 1281		1459, 1435, 1365, 1259	1450, 1365	O-H/ ¹³ C-H deformation	(2, 5, 10)
1407			1400			v_{6} (¹³ CH ₃ OH)	(4, 5)
1289	1293		1290	1294		$v_4 ({}^{13}\text{CH}_4)$	(2, 3)
1111	•••		1114			v_7 (¹³ CH ₃ OH)	(4. 5)
				1036, 1009		¹³ C–O stretch	(2, 5, 10)
1026			1025	••••		v_{11} (¹³ CH ₃ OH)	(4, 5)
1008			1001			v_8 (¹³ CH ₃ OH)	(4, 5)
833	•••		833			v_{12} (¹³ CH ₃ OH)	(4, 5)
				821		¹³ C–H out-of-plane deformation	(2, 5, 10)

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed. ? in column (7) means these peaks are difficult to assign. References. (1) W. Zheng et al. (2009b); (2) M. J. Abplanalp et al. (2018); (3) C. J. Bennett et al. (2006); (4) C. J. Bennett et al. (2007); (5) C. Zhu et al. (2020); (6) C. J. Bennett et al. (2009); (7) P. A. Gerakines & R. L. Hudson (2015); (8) H. Carrascosa et al. (2019); (9) M. M. Wohar & P. W. Jagodzinski (1991); (10) G. Socrates (2004); (11) M. J. Abplanalp et al. (2019a); (12) C. M. Tonauer et al. (2021).

Figure 23. Infrared spectra of methane-methanol ($^{13}CH_4-^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 10 K. The 320 K spectra are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 11.

20 K			10 K				
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Positi	on (cm^{-1})				
6545		•••	6545			$2v_1$ (NH ₃)	(1, 2)
				5095		$v_1 + v_3/v_2 + v_3$ (H ₂ O)	(3, 13)
5002	5010		5011	5010		$v_3 + v_4 (\text{NH}_3)$	(1, 2)
4470	4509		4470	4512		$v_2 + v_3 (\text{NH}_3)$	(1, 2)
	4285			4288		$v_3 + v_4 ({}^{13}\text{CH}_4)$	(4)
	4195			4197		$v_1 + v_4 ({}^{13}\text{CH}_4)$	(4)
4156	4159			4159		$2v_1$ (¹³ CO)	(6, 7)
	3621			3621		$v_1 + v_3 ({}^{13}\text{CO}_2)$	(5, 6)
	3448, 3321,	3327,		3573, 3455, 3319,	3444, 3347,	N-H/O-H stretch	(10)
	3218, 3115	3196, 3141		3228, 3080, 3036	3214, 3040		

				(Continued)			
	20 K			10 K			
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Positi	ion (cm^{-1})				
3370	3370		3371	3372		v ₃ (NH ₃)	(1, 2)
3305, 3244, 3211			3307, 3243, 3210			<i>v</i> ₁ (NH ₃)	(1, 2)
	2930, 2869, 2564	2944, 2871, 2471		2996, 2907, 2820, 2728, 2622	2946, 2851	¹³ C–H stretch	(10)
	2343			2343		v ₃ (CO ₂)	(5, 6)
•••	2275			2275		v_3 (¹³ CO ₂)	(5, 6)
	2178			2179		$^{13}C \equiv N$ stretch	(8, 9, 10)
	2108	2101		2108	2100	$v (O^{13}CN^{-})$	(11)
2088	2093		2088	2092		$v_1 (^{13}CO)$	(6, 7)
2039			2039			$v_1 ({}^{13}C{}^{18}O)$	(6, 7)
	2042			2042		¹³ C=N=N stretch	(8, 9, 10)
1627			1627			$v_4 (\rm NH_3)$	(1, 2)
	1656, 1590, 1541	1697, 1652		1663, 1596	1689, 1652, 1626, 1549,	$^{13}C=O/^{13}C=N/N=O$ stretch	(10)
•••	1498			1497		v_3 (H ₂ ¹³ CO)	(12)
	1486, 1468,	1560,		1486, 1381	1510, 1448,	$O-H/N-H/^{13}C-H$	(10)
	1381, 1324	1371, 1296			1374, 1311	deformation	
•••	1297		•••	1297		$v_4 ({}^{13}CH_4)$	(4)
1062			1064			v_2 (NH ₃)	(1, 2)
	1122, 1046			1105, 1007		$^{13}C-N/^{13}C-O$ stretch	(10)
	867, 763					¹³ C–H out-of-plane deformation	(10)

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed.

References. (1) J. S. Holt et al. (2004); (2) W. Zheng et al. (2008); (3) W. Zheng et al. (2009b); (4) C. J. Bennett et al. (2006); (5) P. A. Gerakines & R. L. Hudson (2015); (6) H. Carrascosa et al. (2019); (7) C. J. Bennett et al. (2009); (8) F. A. Vasconcelos et al. (2020); (9) M. H. Moore & R. L. Hudson (2003); (10) G. Socrates (2004); (11) C. J. Bennett et al. (2010); (12) M. M. Wohar & P. W. Jagodzinski (1991); (13) C. M. Tonauer et al. (2021).

 Table 13

 Infrared Absorption Features of Ammonia–Carbon Dioxide (NH_3 – $^{13}CO_2$) Ice Mixtures before and after Irradiation at 40 and 10 K

	40 K		10 K		
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference
	Position ((cm^{-1})		-	
7244		7251		$2v_1 + 2v_3 (^{13}CO_2)$	(4, 5)
6577		6578		$2v_1$ (NH ₃)	(1, 2)
	5097		5123	$v_1 + v_3/v_2 + v_3$ (H ₂ O)	(3, 11)
5023		5025		$v_3 + v_4 (NH_3)$	(1, 2)
4977	4984	4979	4980	$2v_1 + v_3 ({}^{13}\text{CO}_2)$	(4, 5)
4870	4878	4872	4874	$v_1 + 2v_2 + v_3 (^{13}\text{CO}_2)$	(4, 5)
4491		4493		$v_2 + v_3 (\text{NH}_3)$	(1, 2)
	4159		4164	$2v_1$ (¹³ CO)	(5, 6)
3622	3628	3622	3625	$v_1 + v_3 ({}^{13}\text{CO}_2)$	(4, 5)
3507	3507	3507	3507	$2v_2 + v_3 (^{13}CO_2)$	(4, 5)
3412, 3381		3414, 3383		<i>v</i> ₃ (NH ₃)	(1, 2)
3312, 3249, 3220		3312, 3249, 3221		v_1 (NH ₃)	(1, 2)
	3639, 3442, 3370, 3245, 3085		3638, 3505, 3367,	N-H/O-H stretch	(9)
			3218, 3171		
	2882, 2574		2888, 2728, 2561	¹³ C–H stretch	(9)
2344	2343	2344	2345	v ₃ (CO ₂)	(4, 5)
2302		2304		$v_{\rm L} ({\rm ^{13}CO_2})$	(4, 5)
2266	2273	2266	2272	v_3 (¹³ CO ₂) crystalline/amorphous	(4, 5)
	2183		2182	¹³ C≡N stretch	(7, 8, 9)
	2108			v (O ¹³ CN ⁻)	(10)
	2093		2092	$v_1 ({}^{13}\text{CO})$	(5, 6)
	1669, 1588		1665, 1590	¹³ C=O stretch	(9)
1629		1629		v ₄ (NH ₃)	(1, 2)

_		(Contin	ued)		
	40 K		10 K		
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference
	Position	(cm^{-1})			
	1496, 1477, 1431, 1380, 1341, 1287		1471, 1370, 1354, 1290, 1261	O-H/N-H/ ¹³ C-H deformation	(9)
1068		1068		<i>v</i> ₂ (NH ₃)	(1, 2)
	1043		1043		(5)
	1019		1107, 1005	$^{13}C-N/^{13}C-O$ stretch	(9)
	835		835	¹³ C–H out-of-plane deformation	(9)
651/638	642	652/637	645	$v_2 ({}^{\bar{1}3}CO_2)$	(4, 5)

Table 13

References. (1) J. S. Holt et al. (2004); (2) W. Zheng et al. (2008); (3) W. Zheng et al. (2009b); (4) P. A. Gerakines & R. L. Hudson (2015); (5) H. Carrascosa et al. (2019); (6) C. J. Bennett et al. (2009); (7) F. A. Vasconcelos et al. (2020); (8) M. H. Moore & R. L. Hudson (2003); (9) G. Socrates (2004); (10) C. J. Bennett et al. (2010); (11) C. M. Tonauer et al. (2021).

Figure 24. Infrared spectra of ammonia-carbon monoxide (NH_3 - ^{13}CO) ice mixtures before (top) and after (middle) irradiation at 20 K. The 320 K spectra are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 12.

Figure 25. Infrared spectra of ammonia-carbon monoxide (NH_3 - ^{13}CO) ice mixtures before (top) and after (middle) irradiation at 10 K. The 320 K spectra are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 12.

methane, carbon monoxide, and carbon dioxide, the pristine spectra are more complex considering the broad bands of the hydroxyl group and the hydrocarbyl group from methanol molecules (Figures 22 and 23, Table 11). After irradiation, except for simple molecules ${}^{13}CO_2$, ${}^{13}CO$, and $H_2{}^{13}CO$, a variety of products carrying O-H, ¹³C-H, ¹³C=O, and ¹³C-O functional groups are also observed in the spectra, which can result from carriers of hydrocarbons, ethanol, dimethyl ether, sugar-related compounds, and so on (M. J. Abplanalp et al. 2018, 2019a, 2019b; A. Bergantini et al. 2018c; P. V. Zasimov et al. 2023; C. Zhang et al. 2024). Some of the products are refractory and are detected in the 320 K spectra. Note that, because the ices deposited at 20 K (ice 21) have a higher concentration of methane, the residues reveal a higher fraction of the ¹³C–H groups, and the absorptions of aromatic compounds from irradiated methane are also observed (M. J. Abplanalp et al. 2018; C. Zhang et al. 2023b).

The spectra data of ammonia ices combined ammonia with carbon monoxide, carbon dioxide, and methanol at different temperatures are displayed in Figures 24-29, and the assignments of absorptions are listed in Tables 12-14. The spectra collected from the NH_3 -¹³CO system (ices 23 and 24) before irradiation present sharp absorptions from these two molecules (Figures 24 and 25, Table 12). Upon irradiation, the spectra identify simple products of ${}^{13}CO_2$, $O^{13}CN^{-}$, and $H_2^{13}CO$ along with H_2O (~5123 cm⁻¹) and a set of new absorptions including broad bands between 3700 and 2500 cm⁻¹ associated with N–H, O–H, and ¹³C–H bonds, as well as their deformation modes between 1500 and 1200 cm^{-1} (G. Socrates 2004). In addition, the bands of the ${}^{13}C \equiv N$, ${}^{13}C = N = N$, ${}^{13}C = O$, N = O, ${}^{13}C = N$, and ${}^{13}C = O$ groups are also observed. These groups indicate that complex products have formed as a result of high-energy electron bombardment, such as formamide (H¹³CONH₂), carbamic

Figure 26. Infrared spectra of ammonia–carbon dioxide (NH_3 –¹³CO₂) ice mixtures before (top) and after (middle) irradiation at 40 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 13.

acid (H₂N¹³COOH), zwitterionic glycine (H₃N⁺¹³CH₂¹³COO⁻), and ammonium carbamate ([NH₄]NH₂¹³CO₂) (C. J. Bennett et al. 2010; S. Pilling et al. 2010a; R. Martinez et al. 2014; M. Förstel et al. 2016; J. H. Bredehöft et al. 2017; A. L. F. de Barros et al. 2020; A. D. Volosatova et al. 2022). Many of these products remain observable even after being warmed up to 320 K and appear in the spectra in the form of N-H, O-H, ${}^{13}C-H$, ${}^{13}C\equiv N$, and ${}^{13}C=O$ groups (G. Socrates 2004). For the NH_3 -¹³CO₂ ice mixtures (ices 25) and 26), the unprocessed spectra only present absorption bands of these two molecules (Figures 26 and 27, Table 13). The irradiated spectra have similar profiles of processed NH₃-¹³CO ices and detect functional groups of N-H, O-H, ¹³C-H, $^{13}C \equiv N$, and $^{13}C = O$ involved in molecules, for example, formamide ($H^{13}CONH_2$), carbamic acid ($H_2N^{13}COOH$) and its dimer, ammonium carbamate ($[NH_4]NH_2^{13}CO_2$), and ammonium formate (NH₄H¹³CO₂) (Y. J. Chen et al. 2007; J. B. Bossa et al. 2008a, 2008b; M. Bertin et al. 2009;

S. Jheeta et al. 2012; X. Y. Lv et al. 2014; J. A. Noble et al. 2014; Y. Rodríguez-Lazcano et al. 2014; Z. Altun et al. 2019; R. L. James et al. 2020, 2021; A. Potapov et al. 2022; J. H. Marks et al. 2023b). However, the signal of ${}^{13}C=N=N$ and $H_2^{13}CO$ is too low to be identified, and the $O^{13}CN^{-1}$ compounds are only observed in the 40 K spectra. All products sublimate when heating to 320 K, which is distinct from the NH₃-¹³CO system. This suggests that carbon dioxide molecules may not be an effective precursor for producing refractory species in the solar system or interstellar ices. The last ammonia-bearing systems are NH₃-¹³CH₃OH mixtures (ices 27 and 28), whose spectra are dominated by the fundamental vibration modes of methanol and ammonia (Figures 28 and 29, Table 14). After being processed by energetic electrons, except for functional groups of hydroxyls, amines, and hydrocarbons, a set of new absorptions resulting from products of ${}^{13}CO_2$, ${}^{13}CO$, $O{}^{13}CN^-$, $H_2{}^{13}CO$, and ${}^{13}CH_4$ together with bands of ${}^{13}C\equiv N$, ${}^{13}C=N=N$, ${}^{13}C=O$, N=O,

Figure 27. Infrared spectra of ammonia–carbon dioxide (NH_3 –¹³CO₂) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 13.

¹³C–N, and ¹³C–O stretching vibrations are detected (G. Socrates 2004). These groups can be linked to a suite of species like aldehyde, ketone, sugar-related compounds, carboxylic acid salts, polyoxymethylene, glycolic acid, glycerol, and hexamethylenetetramine (K. I. Öberg et al. 2009; M. Nuevo et al. 2010, 2018; G. Danger et al. 2013; S. Jheeta et al. 2013; V. Vinogradoff et al. 2013; G. M. Muñoz Caro et al. 2014; P. de Marcellus et al. 2015; C. Meinert et al. 2016; M. Farnik et al. 2018; R. G. Urso et al. 2020). Some of them are refractory and are therefore detected in the 320 K spectra.

The infrared spectra of samples composed of carbon monoxide and carbon dioxide (ices 29 and 30) are less complex (Figures 30 and 31, Table 15). Upon irradiation, the spectra reveal products associated with higher-order carbon oxides (${}^{13}CO_x$, x = 3-6), similar to those observed

in processed pure carbon dioxide ices (C. Zhang et al. 2025b), which then disappear during heating to 320 K. The infrared spectra of carbon monoxide and carbon dioxide mixed with methanol (ices 31-34) are displayed in Figures 32-35 accompanied by absorption assignments listed in Tables 16-17. Both pristine spectra consist of the absorptions of these three molecules. After being exposed to energetic electrons, their spectra exhibit absorptions from products of ¹³CO₂, ¹³CO₂, H¹³CO₃, H¹³CO₃, H¹³CO₄, and ¹³CH₄, along with several intensity bands associated with the O-H, $^{13}C-H$, $^{13}C=O$, and $^{13}C-O$ groups. These groups are potentially combined into many products, including glycolaldehyde, methyl formate, glycolic acid, ester, and so on (C. J. Bennett & R. I. Kaiser 2007b; K. I. Öberg et al. 2009; P. Modica & M. E. Palumbo 2010; S. Maity et al. 2014b, 2015; M. Bertin et al. 2016; N. F. W. Ligterink et al. 2018;

Figure 28. Infrared spectra of ammonia-methanol (NH_3 - $^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 40 K. The infrared spectra of processed ices at 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 14.

E. Dartois et al. 2020; F. Schmidt et al. 2021, 2022; J. H. Marks et al. 2023a), which agrees with the detection of broader O–H bands due to this bond in carboxylic acid products participating in hydrogen bonding (G. Socrates 2004). The products from processed ${}^{13}CO_2-{}^{13}CH_3OH$ ices get lost in the 320 K spectra, but some from ${}^{13}CO_{-}{}^{13}CH_3OH$ residues are still observed in the spectra. This suggests that, although the products from radiation chemistry in these two systems lead to similar infrared spectra, i.e., similar functional groups, the products are different to some extent. To specifically identify the difference in these products, further research employing in situ mass spectrometry with isomer-selective abilities is necessary and scheduled.

4. Conclusions and Astrophysical Implications

The current study presents comprehensive in situ infrared spectra of TNO-analog ices processed by GCR proxies. This study focuses on the functional groups involved in complex organic products containing carbon, hydrogen, oxygen, and nitrogen resulting from radiation chemistry within ices, which have important implications for interpreting the surface compositions of TNOs derived from telescope data such as Spitzer and JWST (D. P. Cruikshank et al. 2015; W. M. Grundy et al. 2020; C. Lisse et al. 2020; J. P. Emery et al. 2024; M. N. De Prá et al. 2025; J. Licandro et al. 2025; N. Pinilla-Alonso et al. 2025; S. Protopapa et al. 2024; A. C. Souza-Feliciano et al. 2024), and providing deep insights into the formation and evolution of our solar system.

Figure 29. Infrared spectra of ammonia-methanol (NH_3 - $^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of processed ices at 320 K are shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 14.

First, the spectra of water-containing ice mixtures offer compelling evidence that adding different molecules to the water can significantly change the water molecules' order state, as proved by the shifted and broadened absorptions of the dangling OH bond, extending the content of previous similar studies (M. E. Palumbo 2006; M. E. Palumbo et al. 2010; J. He et al. 2018). Second, our results reveal how complex organic species are synthesized by exposing simple carbon-bearing ice mixtures to ionizing irradiation under TNO conditions by identifying related functional groups in the processed infrared spectra. More importantly, a series of functional groups of hydrocarbons (¹³C–H), hydroxyl (O–H), amine (N–H), carbonyl (¹³C=O), imine (¹³C=N), cyanate (OCN), nitrile ($^{13}C \equiv N$), azide (N₃), diazo ($^{13}C = N = N$), and nitro (NO₂) are formed from irradiated simple molecules (Figure 36) and have access to combine into many potential

species like alcohols, aldehydes, ketones, carboxylic acids, esters, amines, amides, cyanates, and nitriles, among others. These precursors can transfer into more complex species, including important prebiotic molecules like sugar and amino acids, with further reactions to generate macromolecules such as carbohydrates, lipids, nucleic acids, etc. These species are not only relevant to the origin of life but also play an essential role in producing the color diversity of TNOs, considering the formation of large numbers of PAHs and the possible caramelization of sugar-related compounds.

The findings in this study serve as a starting point to fully understand complex compositions and evolutionary processes on the surfaces of TNOs and interstellar grains coated with molecular ices. However, infrared spectroscopy can only detect the presence of new functional groups in deep space ice analogs without sufficient information for identifying specific

Table 14Infrared Absorption Features of Ammonia–Methanol (NH_3 – $^{13}CH_3OH$) Ice Mixtures before and after Irradiation at 40 and 10 K

Before Irradiation Residue After Irradiation Residue at 320 K Before Irradiation Residue After Irradiation Residue at 320 K Assignment Position (cm ⁻¹) 6525 $2v_1$ (NH ₃) 5150 5108 $v_1 + v_2/v_2 + v_3$ (H ₂ O) 5009 5007 5009 5010 $v_3 + v_4$ (NH ₃) 4653 4740, 4656 ? 4484 4513 4484 4509 $v_2 + v_3$ (NH ₃) 4281 4372 $v_2/9 + v_4/6/10$ (¹² CH ₃ OH 4192 4196 $v_1 + v_4$ (¹³ CH ₄) 4139 4148 $v_2/9 + v_4$ (¹³ CH ₄)	Reference (1, 2) (3, 15) (1, 2) (1, 2) (6, 7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1, 2) (3, 15) (1, 2) (1, 2) (6, 7)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1, 2) (3, 15) (1, 2) (1, 2) (6, 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3, 15) (1, 2) (1, 2) (1, 2) (6, 7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1, 2) (1, 2) (6, 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1, 2) (1, 2) (6, 7)
4484451344844509 $v_2 + v_3$ (NH3)43744372 $v_{2/9} + v_{4/6/10}$ (13 CH3OH42814285 $v_{3} + v_4$ (13 CH4)41924196 $v_1 + v_4$ (13 CH4)42654261 $v_{2/9} + v_4$ (13 CH4)CH4)	(1, 2) (6, 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6, 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0, 1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6, 7, 9)
4265 4261 $v_{2/9} + v_4 ({}^{13}\text{CH}_3\text{OH})$	(6, 7, 9)
1.20 1.20	(6, 7)
	(5, 6, 7, 8)
\cdots 3620 \cdots \cdots 3620 \cdots v_{1} v_{2} ($^{13}CO_{2}$)	(4, 5, 6, 7)
3473 3259 3065 3360 3478 3210 3467 N-H/O-H stretch	(13)
3042 3049 3070 2973 3328 3237	(15)
3364 3378 3366 3370 y_{2} (NH ₂)	(1, 2)
34/2 3278 33/5 3301	(1, 2) (6, 7)
3197, 3083 3224, 3068	(0, 7)
··· 2998, 2966, 2932, 2957, ··· 2999, 2966, 2961, 2933, ¹³ C-H stretch	(13)
2878, 2605 2930, 2873 2879, 2815 2873, 2599	
2964 2973 y_2 (¹³ CH ₂ OH)	(6, 7)
2921 \cdots 2920 \cdots \cdots v_0 (¹³ CH ₂ OH)	(6, 7)
2819 v_3 (¹³ CH ₄ OH)	(6, 7)
2699 2696 2766 27	(6, 7)
2613 $y_4 + y_7/y_1 + y_4/g/y_0$	(6, 7)
(¹³ CH ₃ OH)	
2518 $y_6 + y_{11}$ (¹³ CH ₃ OH)	(6, 7)
2464 $y_{\epsilon} + y_{\epsilon} \left(\frac{1^{3} CH_{3} OH}{2} \right)$	(6, 7)
\cdots 2342 \cdots \cdots 2342 \cdots v_3 (CQ ₂)	(4, 5, 6, 7)
\cdots 2275 \cdots \cdots 2275 \cdots v_3 (¹³ CO ₂)	(4, 5, 6, 7)
2238 \cdots 2238 \cdots 227	(6, 7)
\cdots 2180 \cdots 2180 \cdots 1 ¹³ C=N stretch	(11, 12, 13)
\cdots 2105 \cdots \cdots 2105 \cdots $v(0^{13}CN^{-1})$	(6, 7, 14)
\cdots 2092 \cdots \cdots 2092 2092 ν_1 (¹³ CO)	(5, 6, 7, 8)
\cdots 2052 \cdots \cdots 2052 \cdots $^{13}C=N=N$ stretch	(11, 12, 13)
1990 1990 $2v_0 ({}^{13}CH_2OH)$	(11, 12, 10)
1640 \cdots 1641 \cdots v_{k} (Mb ₂)	(0, 7) (1, 2)
\cdots 1680, 1662, 1686, 1527 \cdots 1683, 1668, 1676, 1587 $^{13}C=O/^{13}C=N/N=O$ stree	(1, 2)
1589, 1534 1610, 1540	
\cdots 1496 \cdots \cdots 1499 \cdots v_3 (H ₂ ¹³ CO)	(6, 7, 10)
1479 \cdots 1479 \cdots v_4 (¹³ CH ₃ OH)	(6, 7)
1459 v_{10} (¹³ CH ₃ OH)	(6, 7)
1438 \cdots v_{5} (¹³ CH ₃ OH)	(6, 7)
··· 1463, 1427, 1318, 1274 1465, 1346, 1229 O-H/N-H/ ¹³ C-H	(13)
1378, 1335 1381, 1323 deformation	
1351 $v_6 (^{13}CH_3OH)$	(6, 7)
1296 1296 v_4 ($^{13}CH_4$)	(6, 7, 9)
1120 1120 $v_7 ({}^{13}CH_2OH)$	(6, 7)
\cdots 1013 1033, 985 \cdots 1114, 1082 1066, 950 13 C-O stretch	(13)
1024 1024 v_{11} (¹³ CH ₂ OH)	(6, 7)
$1008 \qquad \cdots \qquad \cdots \qquad 1009 \qquad \cdots \qquad \cdots \qquad \nu_{0} \left({}^{13}\mathrm{CH}_{2}\mathrm{OH} \right)$	(6, 7)
v_{12} (¹³ CH ₂ OH)	(6, 7)
\cdots 778 767 \cdots 819 795 13 C-H out-of-plane	(13)
deformation	< - /

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed. ? in column (7) means these peaks are difficult to assign. **References.** (1) J. S. Holt et al. (2004); (2) W. Zheng et al. (2008); (3) W. Zheng et al. (2009b); (4) P. A. Gerakines & R. L. Hudson (2015); (5) H. Carrascosa et al. (2019); (6) C. J. Bennett et al. (2007); (7) C. Zhu et al. (2020); (8) C. J. Bennett et al. (2009); (9) C. J. Bennett et al. (2006); (10) M. M. Wohar & P. W. Jagodzinski (1991); (11) F. A. Vasconcelos et al. (2020); (12) M. H. Moore & R. L. Hudson (2003); (13) G. Socrates (2004); (14) C. J. Bennett et al. (2010); (15) C. M. Tonauer et al. (2021).

Figure 30. Infrared spectra of monoxide-carbon dioxide ($^{13}CO-^{13}CO_2$) ice mixtures before (top) and after (middle) irradiation at 20 K. The infrared spectra of the irradiated sample warmed up to 320 K are also shown at the bottom. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 15. L indicates longitudinal.

 Table 15

 Infrared Absorption Features of Carbon Monoxide–Carbon Dioxide ($^{13}CO-^{13}CO_2$) Ice Mixtures before and after Irradiation at 20 and 10 K

20 K		10 K			Reference
Before Irradiation After Irradiation		Before Irradiation After Irradiation		Assignment	
	Position	(cm^{-1})			
7244		7251		$2v_1 + 2v_3 (^{13}\text{CO}_2)$	(1, 2, 3)
4982	4985	4982	4985	$2v_1 + v_3 (^{13}\text{CO}_2)$	(1, 2, 3)
4874	4878	4874	4878	$v_1 + 2v_2 + v_3 (^{13}\text{CO}_2)$	(1, 2, 3)
4721	4721	4721	4723	$4\nu_2 + \nu_3 (^{13}\text{CO}_2)$	(1, 2, 3)
4164	4162	4163	4161	$2v_1$ (¹³ CO)	(2, 4)
3626	3630	3626	3630	$v_1 + v_3 ({}^{13}\text{CO}_2)$	(1, 2, 3)
3510	3513	3510	3514	$2v_2 + v_3 (^{13}CO_2)$	(1, 2, 3)
2349	2349	2349	2349	v ₃ (CO ₂)	(1, 2, 3)
2302	2299	2301	2298	$v_{\rm L} ({\rm ^{13}CO_2})$	(1, 2, 3)
2268	2274/2264	2268	2274/2264	v_3 (¹³ CO ₂) crystalline/amorphous	(1, 2, 3)
2094	2092	2094	2092	v_1 (¹³ CO)	(2, 4)
2042	2042	2042	2041	$v_1 ({}^{13}C{}^{18}O)$	(2, 4)
	1990		1990	$v_1 ({}^{13}\text{CO}_3)$	(3, 5)
	1894		1894	$v_1 ({}^{13}\text{CO}_4)$	(3, 6)

		(0	Continued)		
20 K		10 K			
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference
	Position	$n (cm^{-1})$			
	1874		1874	$v_1 ({}^{13}\text{CO}_5)$	(3, 7)
	1832		1832	$v_1 ({}^{13}\text{CO}_6)$	(3, 8)
	1043		1043	$v_3 (O_3)$	(2, 3)
652/637	650/637	651/637	650/636	$v_2 ({}^{13}\text{CO}_2)$	(1, 2, 3)

Table 15

References. (1) P. A. Gerakines & R. L. Hudson (2015); (2) H. Carrascosa et al. (2019); (3) C. J. Bennett et al. (2014); (4) C. J. Bennett et al. (2009); (5) C. J. Bennett et al. (2004); (6) C. S. Jamieson et al. (2007b); (7) C. S. Jamieson et al. (2007a); (8) C. S. Jamieson et al. (2008).

20 K		10 K					
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position	(cm^{-1})				
				5153		$v_1 + v_2/v_2 + v_3$ (H ₂ O)	(1, 11)
	4657			4740, 4657		?	
4386			4383			$v_{2/9} + v_{4/6/10}$ (¹³ CH ₃ OH)	(5, 6)
	4285			4285		$v_3 + v_4 ({}^{13}\text{CH}_4)$	(5, 6, 8)
	4193			4193		$v_1 + v_4 ({}^{13}\text{CH}_4)$	(5, 6, 8)
4274			4240			$v_{2/0} + v_4 (^{13}\text{CH}_3\text{OH})$	(5, 6)
4153	4159		4153	4159		$2v_1$ (¹³ CO)	(3, 5, 6, 7)
	3622			3621		$v_1 + v_2 ({}^{13}\text{CO}_2)$	(2, 3, 4)
	3648, 3518, 3382, 3236, 3135	3463, 3371, 3238		3643, 3493, 3397, 3269, 3068	3444, 3288, 3075	O–H stretch	(10)
3467, 3397, 3255, 3085			3464, 3395, 3268, 3065			<i>v</i> ¹ (¹³ CH ₃ OH)	(5, 6)
	2999, 2973, 2966, 2932, 2870, 2831, 2731, 2571	2957, 2930, 2870	•••	2999, 2973, 2966, 2932, 2879, 2815, 2754, 2552	2946, 2924, 2870	¹³ C–H stretch	(10)
2947			2947	•••		v_2 (¹³ CH ₃ OH)	(5, 6)
2921			2920	•••		v_9 (¹³ CH ₃ OH)	(5, 6)
2824			2824	•••		v ₃ (¹³ CH ₃ OH)	(5, 6)
2790			2798	•••		$2v_6$ (¹³ CH ₃ OH)	(5, 6)
2581			2581			$v_4 + v_{7/11} + v_{4/6/10}$ (¹³ CH ₃ OH)	(5, 6)
2511	•••		2512	•••		$v_6 + v_{11}$ (¹³ CH ₃ OH)	(5, 6)
	2343			2342		v_3 (CO ₂)	(2, 3, 4)
	2275			2274		v_3 (¹³ CO ₂)	(2, 3, 4)
2208	•••		2208	•••		$2v_{7/11}$ (¹³ CH ₃ OH)	(5, 6)
	2166			•••		${}^{13}C \equiv {}^{13}C$ stretch	(10)
2137	•••		2137	•••		v ₁ (CO)	(3, 5, 6, 7)
2088	2093		2088	2091		v_1 (¹³ CO)	(3, 5, 6, 7)
2037	2041		2037	2040		$v_1 ({}^{13}C{}^{18}O)$	(3, 5, 6, 7)
	1808			1809		v (H ¹³ CO)	(5, 6)
	1677, 1661, 1570	1686, 1527		1680, 1668,		•••	•••
1584, 1540	1676, 1587	¹³ C=0	10	•••			
		stretch					
	1499			1498		v_3 (H ₂ ¹³ CO)	(5, 6, 9)
1474			1474			v_4 (¹³ CH ₃ OH)	(5, 6)
1460	•••		1459	•••		v_{10} (¹³ CH ₃ OH)	(5, 6)
1420			1417			v_5 (¹³ CH ₃ OH)	(5, 6)
	1453, 1424, 1368			1453, 1424, 1368	1448, 1390	$O - H / {}^{13}C - H$	(10)
						deformation	. /
1407			1407			v_{6} (¹³ CH ₃ OH)	(5, 6)
	1296			1295		$v_4 ({}^{13}\text{CH}_4)$	(5, 6, 8)
1114	•••		1117	•••		v_7 (¹³ CH ₃ OH)	(5. 6)
						, , , , , , , , , , , , , , , , , , , ,	· · · · /

(Continued)							
20 K		10 K					
Before Irradiation	After Irradiation	Residue at 320 K	Before Irradiation	After Irradiation	Residue at 320 K	Assignment	Reference
		Position	(cm^{-1})				
	1261, 1108, 1066, 1009			1261, 1108, 1066, 1009	1278, 1106, 1056	¹³ C–O stretch	(10)
1011			1010	•••		v_8 (¹³ CH ₃ OH)	(5, 6)
835			833			v_{12} (¹³ CH ₃ OH)	(5, 6)
	761			796		¹³ C–H out-of-plane deformation	(10)

Table 16

Note. The bands in the residue that remained after the irradiated ice warmed up to 320 K are also listed. ? in column (7) means these peaks are difficult to assign. References. (1) W. Zheng et al. (2009b); (2) P. A. Gerakines & R. L. Hudson (2015); (3) H. Carrascosa et al. (2019); (4) C. J. Bennett et al. (2014); (5) C. J. Bennett et al. (2007); (6) C. Zhu et al. (2020); (7) C. J. Bennett et al. (2009); (8) C. J. Bennett et al. (2006); (9) M. M. Wohar & P. W. Jagodzinski (1991); (10) G. Socrates (2004); (11) C. M. Tonauer et al. (2021).

Figure 31. Infrared spectra of monoxide–carbon dioxide (${}^{13}CO{-}^{13}CO_2$) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are also shown at the bottom. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 15. L indicates longitudinal.

Figure 32. Infrared spectra of carbon monoxide-methanol (^{13}CO - $^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 20 K. The infrared spectra of the irradiated sample warmed up to 320 K are also shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 16.

molecular products. Consequently, more sensitive experiments are necessary, such as isomer-selective photoionization reflectron time-of-flight mass spectrometry and gas chromatography (C. Meinert & U. J. Meierhenrich 2012; A. M. Turner & R. I. Kaiser 2020). By combining these techniques, further studies have access to catalog compounds from the processed TNO ices at the molecular level, and quantitative analysis of the evolution of key functional groups and molecules is also required to untangle the formation mechanisms of those products.

On the surface of airless TNOs, which have low temperatures ranging from 30 to 50 K, molecules such as water, methane, ammonia, carbon monoxide, carbon dioxide, and methanol have been detected in condensation form (S. Fornasier et al. 2009; M. E. Brown 2012). The long-term irradiation on these small airless objects naturally leads to a set

of complex chemical reactions followed by miscellaneous poorly characterized products. Investigation of radiation chemistry on TNO-analog ices is crucial for understanding the distribution of organics in our solar system, as well as having direct implications for explaining telescope observations, for example, color diversity along with underlying compositions of TNOs (D. C. Jewitt & J. X. Luu 2001; M. A. Barucci et al. 2005; M. E. Brown et al. 2011; A. C. Souza-Feliciano et al. 2024; M. N. De Prá et al. 2025; N. Pinilla-Alonso et al. 2025). The visible reflectance spectral gradient has demonstrated a broad range of colors of TNOs from neutral to ultrared, which is associated with the presence of particular compounds with chromophores, i.e., functional groups of matter responsible for their colors. Previous studies revealed that ionizing radiation exposure on TNO-analog ices results in residues with various colors from neutral to orange

	Table 17
	Table 17
Infrared Absorption Features of Carbon Dioxide-Methanol	$(^{13}CO_2 - ^{13}CH_3OH)$ Ice Mixtures before and after Irradiation at 40 and 10 K

40 K			10 K		
Before Irradiation	After Irradiation	Before Irradiation	After Irradiation	Assignment	Reference
	Positior	(cm^{-1})			
	5105		5119	$v_1 + v_2/v_2 + v_3$ (H ₂ O)	(1, 2)
	4665, 4510		4662, 4510	?	
4974	4984	4974	4984	$2v_1 + v_3 ({}^{13}\text{CO}_2)$	(3, 4, 5)
4862	4877	4867	4877	$v_1 + 2v_2 + v_3 (^{13}\text{CO}_2)$	(3, 4, 5)
4389		4388		$v_{2/9} + v_{4/6/10} (^{13}\text{CH}_3\text{OH})$	(6, 7)
		•••	4287	$v_3 + v_4 (^{13}\text{CH}_4)$	(6, 7, 9)
•••	4159	•••	4160	$2v_1$ (¹³ CO)	(4, 6, 7, 8)
4278		4247		$v_{2/9} + v_4 (^{13}\text{CH}_3\text{OH})$	(6, 7)
3621	3627	3621	3623	$v_1 + v_3 ({}^{13}\text{CO}_2)$	(3, 4, 5)
3507	3511	3509	3510	$2v_2 + v_3 ({}^{13}\text{CO}_2)$	(3, 4, 5)
	3649, 3455, 3388, 3267	•••	3639, 3524, 3389, 3240, 3113	O-H stretch	(11)
3405, 3269, 3085		3401, 3273, 3205		$v_1 ({}^{13}\text{CH}_3\text{OH})$	(6, 7)
	2964, 2892, 2709, 2602, 2562		2999, 2966, 2948, 2841, 2551	¹³ C–H stretch	(11)
2978		2980		v_2 (¹³ CH ₃ OH)	(6, 7)
		2952		$2v_4$ (¹³ CH ₃ OH)	(6, 7)
2923		2923		v ₉ (¹³ CH ₃ OH)	(6, 7)
2828		2828		$v_3 ({}^{13}\text{CH}_3\text{OH})$	(6, 7)
2790		2798		2v ₆ (¹³ CH ₃ OH)	(6, 7)
2580		2579		$v_4 + v_{7/11} + v_{4/6/10} (^{13}\text{CH}_3\text{OH})$	(6, 7)
2512		2512		$v_6 + v_{11}$ (¹³ CH ₃ OH)	(6, 7)
2345	2346	2345	2344	<i>v</i> ₃ (CO ₂)	(3, 4, 5)
2268	2274	2267	2273	$v_3 ({}^{13}\text{CO}_2)$	(3, 4, 5)
	2093		2091	$v_1 (^{13}CO)$	(4, 6, 7, 8)
•••	2041	•••	2040	$v_1 ({}^{13}C{}^{18}O)$	(4, 6, 7, 8)
2006		2008		$2v_8$ (¹³ CH ₃ OH)	(6, 7)
•••	1811	•••	1812	v (H ¹³ CO)	(6, 7)
•••	1678, 1633, 1621	•••	1680, 1665, 1585	$^{13}C=O/^{13}C=^{13}C$ stretch	(11)
	1499	•••	1499	$v_3 (H_2^{13}CO)$	(6, 7, 10)
1475		1475		$v_4 ({}^{13}\text{CH}_3\text{OH})$	(6, 7)
1461		1461		v_{10} (¹³ CH ₃ OH)	(6, 7)
1418		1417		v ₅ (¹³ CH ₃ OH)	(6, 7)
	1460, 1368, 1277		1457, 1377, 1261	O-H/ ¹³ C-H deformation	(11)
1336		1336		$v_6 ({}^{13}CH_3OH)$	(6, 7)
			1296	$v_4 ({}^{13}\text{CH}_4)$	(6, 7, 9)
1114		1114		v ₇ (¹³ CH ₃ OH)	(6, 7)
	1069, 1007		1111, 1062, 1009	¹³ C–O stretch	(11)
1009		1009		$v_8 ({}^{13}\text{CH}_3\text{OH})$	(6, 7)
	862, 791		833	¹³ C-H out-of-plane deformation	(11)
835		835		v ₁₂ (¹³ CH ₃ OH)	(6, 7)
648		648		$v_2 ({}^{13}\text{CO}_2)$	(3, 4, 5)

Note. ? in column (5) means these peaks are difficult to assign.

References: (1) W. Zheng et al. (2009b); (2) C. M. Tonauer et al. (2021); (3) P. A. Gerakines & R. L. Hudson (2015); (4) H. Carrascosa et al. (2019); (5) C. J. Bennett et al. (2014); (6) C. J. Bennett et al. (2007); (7) C. Zhu et al. (2020); (8) C. J. Bennett et al. (2009); (9) C. J. Bennett et al. (2006); (10) M. M. Wohar & P. W. Jagodzinski (1991); (11) G. Socrates (2004).

and even dark with different irradiation levels and starting compositions, implying the crucial role of radiation chemistry in producing the color diversity of TNOs (R. Brunetto et al. 2006; M. J. Poston et al. 2018; N. Sakakibara et al. 2020; E. Quirico et al. 2023; C. Zhang et al. 2023b, 2024). Recently, Quirico et al. (2023) employed high-energy heavy ions to process methanol ice to search for the compounds responsible for the reddish surface of Arrokoth and found that the presence of conjugated olefinic groups, which have $\pi \rightarrow \pi^*$ electronic transitions, control the absorption of short wavelengths in the visible spectrum, resulting in the reddish color. Therefore, knowledge of the functional groups on

TNOs is an important step to shed light on corresponding compositions and to constrain a hypothesis for their color diversity (J. Luu & D. Jewitt 1996; R. Gil-Hutton 2002; M. A. Barucci et al. 2005; M. E. Brown et al. 2011). On the other hand, the laboratory exposure time of these ices can be scaled to the time of the radiation processing of a TNO surface; for example, the irradiation dose used here corresponds to some 1800 million years of GCR exposure on the top few hundred nanometers of airless TNOs (J. F. Cooper et al. 2003; M. J. Loeffler et al. 2020; E. Quirico et al. 2023). Therefore, this study provides a detailed data set of functional groups from a complex radiation chemistry

Figure 33. Infrared spectra of carbon monoxide-methanol ($^{13}CO-^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are also shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 16.

taking place on the surface of TNOs. Combining these groups with their spectral colors derived from visible reflectance spectra will undoubtedly deepen the understanding of the compounds in the outer solar system. Furthermore, the ices investigated in the current study are widespread in deep space (A. C. A. Boogert et al. 2015), and thereby the data obtained here can also be used to elucidate the formation of interstellar complex organic molecules along with underlying chemical reactions (P. Ehrenfreund & S. B. Charnley 2000; A. G. G. M. Tielens 2013; S. L. Grant et al. 2023; M. K. McClure et al. 2023; H. M. Cuppen et al. 2024; O. Nayak et al. 2024). In particular, the wavelength range of the present study is an essential part of JWST coverage, and these data will provide fundamental support in explicating the infrared spectra from JWST (R. Métayer et al. 2019; M. K. McClure et al. 2023; R. J. Cartwright et al. 2024; N. Pinilla-Alonso et al. 2024, 2025). In addition, the present laboratory investigations provide compelling evidence of the formation of key functional groups related to important prebiotic molecules like sugars and amino acids by exploiting simple ice mixtures upon interaction with ionizing radiation, which has potential implications in searching for astrobiological species in extraterrestrial environments (D. P. Cruikshank et al. 2019; S. A. Sandford et al. 2020; A. Neubeck & S. McMahon 2022). Note that this study provides a comprehensive infrared data inventory of TNO surface ice analogs including water, methane, ammonia, carbon monoxide, carbon dioxide, and methanol processed by ionizing radiation under low temperatures. However, the possible detection of other molecules such as hydrogen sulfide

Figure 34. Infrared spectra of carbon dioxide-methanol ($^{13}CO_2-^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 40 K. The infrared spectra of the irradiated sample warmed up to 320 K are also shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 17.

and silicate at some TNOs has been reported (J. R. Brucato et al. 2003; M. Fulle 2017; T. Seccull et al. 2018, 2024; A. Mahjoub et al. 2021). Ice mixtures containing H₂S will produce complex sulfur-bearing functional groups of newly formed molecules such as C-S, C=S, C(O)SH, C(S)OH, and sulfur heteroaromatic species, and, in some scenarios, silicates can facilitate radiation chemical reactions within ices as a catalysis to form macromolecules (T. Seccull et al. 2024;

V. Vinogradoff et al. 2024). Therefore, further experiments are warranted to probe ices mixed with hydrogen sulfide or silicates to catalog compounds on TNOs and underlying formation pathways. These synergistic studies are expected to develop the concept of how complex molecules were synthesized in the outer solar system, ultimately leading to a better understanding of the origin and evolution of our solar system.

Figure 35. Infrared spectra of carbon dioxide—methanol ($^{13}CO_2$ — $^{13}CH_3OH$) ice mixtures before (top) and after (middle) irradiation at 10 K. The infrared spectra of the irradiated sample warmed up to 320 K are also shown at the bottom. The experimental spectra are plotted in black, the deconvoluted peaks are in blue, and the sums are in red. Only noticeable peaks are labeled for clarity, and detailed peak assignments are listed in Table 17.

Zhang et al.

Figure 36. Functional groups identified from the infrared spectra of irradiated TNO ice analogs. These groups can be combined into various compounds, suggesting complex species in the outer solar system. Carbon atoms in all groups are the isotopically labeled 13-carbon.

Acknowledgments

This study was supported by the US National Aeronautics and Space Administration (NASA) under grant Nos. 80NSSC21K1834 and 80NSSC24K1732.

ORCID iDs

Chaojiang Zhang https://orcid.org/0000-0003-3727-901X Jia Wang https://orcid.org/0000-0002-3795-8699 Leslie A. Young https://orcid.org/0000-0002-7547-3967 Ralf I. Kaiser https://orcid.org/0000-0002-7233-7206

References

- Abou Mrad, N., Duvernay, F., Chiavassa, T., & Danger, G. 2016, MNRAS, 458, 1234
- Abplanalp, M. J., Förstel, M., & Kaiser, R. I. 2016a, CPL, 644, 79
- Abplanalp, M. J., Frigge, R., & Kaiser, R. I. 2019a, SciA, 5, eaaw5841
- Abplanalp, M. J., Góbi, S., & Kaiser, R. I. 2019b, PCCP, 21, 5378
- Abplanalp, M. J., Gozem, S., Krylov, A. I., et al. 2016b, PNAS, 113, 7727
- Abplanalp, M. J., Jones, B. M., & Kaiser, R. I. 2018, PCCP, 20, 5435
- Altun, Z., Bleda, E., & Trindle, C. 2019, Life, 9, 34
- Altwegg, K., Balsiger, H., Bar-Nun, A., et al. 2016, SciA, 2, e1600285
- Arumainayagam, C. R., Garrod, R. T., Boyer, M. C., et al. 2019, ChSRv, 48, 2293
- Augé, B., Dartois, E., Engrand, C., et al. 2016, A&A, 592, A99
- Awad, Z., Chigai, T., Kimura, Y., Shalabiea, O. M., & Yamamoto, T. 2005, ApJ, 626, 262
- Baratta, G. A., Domingo, M., Ferini, G., et al. 2003, NIMPB, 209, 283
- Baratta, G. A., Leto, G., & Palumbo, M. E. 2002, A&A, 384, 343
- Bartels-Rausch, T., Bergeron, V., Cartwright, J. H. E., et al. 2012, RvMP, 84, 885
- Barucci, M. A., Belskaya, I. N., Fulchignoni, M., & Birlan, M. 2005, AJ, 130, 1291
- Barucci, M. A., & Merlin, F. 2020, in The Trans-Neptunian Solar System, ed. D. Prialnik, A. Barucci, & L. Young (1st ed.; Amsterdam: Elsevier), 109
- Barucci, M., Brown, M., Emery, J., & Merlin, F. 2008, in The Solar System Beyond Neptune, ed. M. A. Barucci et al. (1st ed.; Tucson, AZ: Univ. Arizona Press), 143
- Behr, P. R., Tribbett, P. D., Robinson, T. D., & Loeffler, M. J. 2020, ApJ, 900, 147
- Bennett, C. J., Chen, S.-H., Sun, B.-J., Chang, A. H. H., & Kaiser, R. I. 2007, ApJ, 660, 1588

- Bennett, C. J., Ennis, C. P., & Kaiser, R. I. 2014, ApJ, 794, 57
- Bennett, C. J., Hama, T., Kim, Y. S., Kawasaki, M., & Kaiser, R. I. 2011, ApJ, 727, 27
- Bennett, C. J., Jamieson, C., Mebel, A. M., & Kaiser, R. I. 2004, PCCP, 6, 735
- Bennett, C. J., Jamieson, C. S., & Kaiser, R. I. 2009, ApJS, 182, 1
- Bennett, C. J., Jamieson, C. S., Osamura, Y., & Kaiser, R. I. 2005, ApJ, 624, 1097
- Bennett, C. J., Jamieson, C. S., Osamura, Y., & Kaiser, R. I. 2006, ApJ, 653, 792
- Bennett, C. J., Jones, B., Knox, E., et al. 2010, ApJ, 723, 641
- Bennett, C. J., & Kaiser, R. I. 2007a, ApJ, 660, 1289
- Bennett, C. J., & Kaiser, R. I. 2007b, ApJ, 661, 899
- Bennett, C. J., Pirim, C., & Orlando, T. M. 2013, ChRv, 113, 9086
- Bergantini, A., Abplanalp, M. J., Pokhilko, P., et al. 2018a, ApJ, 860, 108
- Bergantini, A., Frigge, R., & Kaiser, R. I. 2018b, ApJ, 859, 59
- Bergantini, A., Góbi, S., Abplanalp, M. J., & Kaiser, R. I. 2018c, ApJ, 852, 70
- Bergantini, A., Maksyutenko, P., & Kaiser, R. I. 2017, ApJ, 841, 96
- Bergantini, A., Zhu, C., & Kaiser, R. I. 2018d, ApJ, 862, 140
- Bertin, M., Martin, I., Duvernay, F., et al. 2009, PCCP, 11, 1838
- Bertin, M., Romanzin, C., Doronin, M., et al. 2016, ApJL, 817, L12
- Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541
- Bordalo, V., da Silveira, E. F., Lv, X. Y., et al. 2013, ApJ, 774, 105
- Bossa, J. B., Duvernay, F., Theulé, P., Borget, F., & Chiavassa, T. 2008a, CP,
- 354, 211 Bossa, J. B., Theulé, P., Duvernay, F., Borget, F., & Chiavassa, T. 2008b, A&A 492, 719
- Bouilloud, M., Fray, N., Bénilan, Y., et al. 2015, MNRAS, 451, 2145
- Bouwman, J., Ludwig, W., Awad, Z., et al. 2007, A&A, 476, 995
- Bredehöft, J. H., Böhler, E., Schmidt, F., Borrmann, T., & Swiderek, P. 2017,
- ESC, 1, 50
- Brown, M. E. 2012, AREPS, 40, 467
- Brown, M. E., Schaller, E. L., & Fraser, W. C. 2011, ApJL, 739, L60
- Brown, R. H., Cruikshank, D. P., & Pendleton, Y. 1999, ApJL, 519, L101
- Brucato, J. R., Strazzulla, G., Baratta, G., Mennella, V., & Colangeli, L. 2003, EM&P, 92, 307
- Brunetto, R., Barucci, M. A., Dotto, E., & Strazzulla, G. 2006, ApJ, 644, 646 Buch, V., & Devlin, J. P. 1991, JChPh, 94, 4091
- Canta, A., Öberg, K. I., & Rajappan, M. 2023, ApJ, 953, 81
- Carrascosa, H., Hsiao, L. C., Sie, N. E., Muñoz Caro, G. M., & Chen, Y. J. 2019, MNRAS, 486, 1985
- Cartwright, R. J., Villanueva, G. L., Holler, B. J., et al. 2024, PSJ, 5, 60
- Chen, Y. J., Nuevo, M., Hsieh, J. M., et al. 2007, A&A, 464, 253

Chyba, C. F., Thomas, P. J., Brookshaw, L., & Sagan, C. 1990, Sci, 249, 366 Chyba, C., & Sagan, C. 1992, Natur, 355, 125

Cooke, I. R., Fayolle, E. C., & Öberg, K. I. 2016, ApJ, 832, 5

- Cooper, G., Kimmich, N., Belisle, W., et al. 2001, Natur, 414, 879
- Cooper, G., & Rios, A. C. 2016, PNAS, 113, E3322
- Cooper, J. F., Christian, E. R., Richardson, J. D., & Wang, C. 2003, EM&P, 92, 261
- Cronin, J. R., & Pizzarello, S. 1997, Sci, 275, 951
- Cruikshank, D. P., Grundy, W. M., DeMeo, F. E., et al. 2015, Icar, 246, 82
- Cruikshank, D. P., Imanaka, H., & Dalle Ore, C. M. 2005, AdSpR, 36, 178 Cruikshank, D. P., Materese, C. K., Pendleton, Y. J., et al. 2019, AsBio,
- 19, 831
- Cuppen, H. M., Linnartz, H., & Ioppolo, S. 2024, ARA&A, 62, 243
- Danger, G., Orthous-Daunay, F. R., de Marcellus, P., et al. 2013, GeCoA, 118, 184
- Dartois, E., Chabot, M., Bacmann, A., et al. 2020, A&A, 634, A103
- de Barros, A. L. F., Bergantini, A., Domaracka, A., et al. 2020, MNRAS,
- 499, 2162
 de Barros, A. L. F., da Silveira, E. F., Bergantini, A., Rothard, H., & Boduch, P. 2015, ApJ, 810, 156
- de Barros, A. L. F., da Silveira, E. F., Rothard, H., Langlinay, T., & Boduch, P. 2014, MNRAS, 443, 2733
- de Marcellus, P., Meinert, C., Myrgorodska, I., et al. 2015, PNAS, 112, 965 De Prá, M. N., Hénault, E., Pinilla-Alonso, N., et al. 2025, NatAs, 9, 252
- Drouin, D., Couture, A. R., Joly, D., et al. 2007, Scanning, 29, 92
- Eckhardt, A. K., Bergantini, A., Singh, S. K., Schreiner, P. R., & Kaiser, R. I. 2019, AngCh, 58, 5663
- Ehrenfreund, P., & Charnley, S. B. 2000, ARA&A, 38, 427
- Emery, J. P., Wong, I., Brunetto, R., et al. 2024, Icar, 414, 116017
- Farnik, M., Pysanenko, A., Moriova, K., et al. 2018, JPCA, 122, 8458
- Ferrari, B. C., Slavicinska, K., & Bennett, C. J. 2021, AcChR, 54, 1067
- Fornasier, S., Barucci, M. A., de Bergh, C., et al. 2009, A&A, 508, 457
- Förstel, M., Bergantini, A., Maksyutenko, P., Góbi, S., & Kaiser, R. I. 2017, ApJ, 845, 83
- Förstel, M., Maksyutenko, P., Jones, B. M., et al. 2016, ApJ, 820, 117 Fulle, M. 2017, NatAs, 1, 0018
- Furukawa, Y., Chikaraishi, Y., Ohkouchi, N., et al. 2019, PNAS, 116, 24440
- Gálvez, Ó., Maté, B., Herrero, V. J., & Escribano, R. 2009, ApJ, 703, 2101
- Gerakines, P. A., & Hudson, R. L. 2015, ApJL, 808, L40
- Gerakines, P. A., Materese, C. K., & Hudson, R. L. 2023, MNRAS, 522, 3145
- Gerakines, P. A., Moore, M. H., & Hudson, R. L. 2000, A&A, 357, 793
- Gil-Hutton, R. 2002, P&SS, 50, 57
- Gladman, B., & Volk, K. 2021, ARA&A, 59, 203
- Golabek, G. J., & Jutzi, M. 2021, Icar, 363, 114437
- Grant, S. L., van Dishoeck, E. F., Tabone, B., et al. 2023, ApJL, 947, L6
- Grundy, W. M., Bird, M. K., Britt, D. T., et al. 2020, Sci, 367, eaay3705
- Grundy, W. M., Cruikshank, D. P., Gladstone, G. R., et al. 2016, Natur, 539, 65
- Gudipati, M. S., & Castillo-Rogez, J. 2013, The Science of Solar System Ices (1st ed.; New York: Springer)
- Hasegawa, T., Yanagisawa, H., Nagasawa, T., et al. 2024, ApJ, 969, 134
- He, J., Clements, A. R., Emtiaz, S. M., et al. 2019, ApJ, 878, 94
- He, J., Emtiaz, S. M., & Vidali, G. 2018, ApJ, 863, 156
- Heavens, O. S. 1955, Optical Properties of Thin Solid Films (1st ed.; New York: Dover)
- Hollenberg, J. L., & Dows, D. A. 1961, JChPh, 34, 1061
- Holt, J. S., Sadoskas, D., & Pursell, C. J. 2004, JChPh, 120, 7153
- Huang, C. H., Cecchi-Pestellini, C., Ciaravella, A., et al. 2022, MNRAS, 517, 3078
- Hudson, R., Palumbo, M. E., Strazzulla, G., et al. 2008, in The Solar System Beyond Neptune, ed. M. A. Barucci et al. (1st ed.; Tucson, AZ: Univ. Arizona Press), 507
- Hudson, R. L. 2018, ApJ, 867, 160
- Hudson, R. L., Gerakines, P. A., & Yarnall, Y. Y. 2022, ApJ, 925, 156
- Hudson, R. L., Gerakines, P. A., & Yarnall, Y. Y. 2024, ApJ, 970, 108
- Hudson, R. L., Loeffler, M. J., Ferrante, R. F., Gerakines, P. A., & Coleman, F. M. 2020, ApJ, 891, 22
- Hudson, R. L., & Moore, M. H. 2005, in IAU Symp. 231, Astrochemistry: Recent Successes and Current Challenges, ed. D. C. Lis et al. (Cambridge: Cambridge Univ. Press), 247
- James, R. L., Ioppolo, S., Hoffmann, S. V., et al. 2020, RSCAd, 10, 37515
- James, R. L., Ioppolo, S., Hoffmann, S. V., et al. 2021, RSCAd, 11, 33055
- Jamieson, C. S., Bennett, C. J., Mebel, A. M., & Kaiser, R. I. 2005, ApJ, 624, 436
- Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2006a, ChemPhysChem, 7, 2508
- Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2006b, ApJS, 163, 184
- Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2007a, CPL, 443, 49
- Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2007b, CPL, 440, 105

- Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2008, CPL, 450, 312
- Jewitt, D., & Luu, J. 1993, Natur, 362, 730
- Jewitt, D. C., & Luu, J. X. 2001, AJ, 122, 2099
- Jheeta, S., Domaracka, A., Ptasinska, S., Sivaraman, B., & Mason, N. J. 2013, CPL, 556, 359

Zhang et al.

- Jheeta, S., Ptasinska, S., Sivaraman, B., & Mason, N. J. 2012, CPL, 543, 208
- Jiménez-Escobar, A., Chen, Y. J., Ciaravella, A., et al. 2016, ApJ, 820, 25
- Johnson, R. E. 1990, Energetic Charged-particle Interactions with Atmospheres and Surfaces (1st ed.; Berlin: Springer)
- Johnson, R. E. 1991, JGR, 96, 17553
- Jones, B. M., & Kaiser, R. I. 2013, JPCL, 4, 1965
- Kaiser, R. I., Maity, S., & Jones, B. M. 2014, PCCP, 16, 3399
- Kaiser, R. I., & Mebel, A. M. 2008, CPL, 465, 1
- Kaiser, R. I., Zheng, W., Osamura, Y., & Chang, A. H. 2011, PCCP, 13, 15747
- Kim, Y. S., & Kaiser, R. I. 2010, ApJ, 725, 1002
- Kim, Y. S., & Kaiser, R. I. 2011, ApJ, 729, 68
- Kim, Y. S., & Kaiser, R. I. 2012, ApJ, 758, 37
- Kim, Y. S., Zhang, F., & Kaiser, R. I. 2011, PCCP, 13, 15766
- Kipfer, K. A., Galli, A., Riedo, A., et al. 2024, Icar, 410, 115742
- Kleimeier, N. F., & Kaiser, R. I. 2022, JPCL, 13, 229
- Kleimeier, N. F., Liu, Y., Turner, A. M., et al. 2022, PCCP, 24, 1424
- Krim, L., & Jonusas, M. 2019, LTP, 45, 606
- Kundu, S., Prabhudesai, V. S., & Krishnakumar, E. 2017, PCCP, 19, 25723
- Licandro, J., Pinilla-Alonso, N., Holler, B. J., et al. 2025, NatAs, 9, 245
- Ligterink, N. F. W., Walsh, C., Bhuin, R. G., et al. 2018, A&A, 612, A88
- Lisse, C., Bauer, J., Cruikshank, D., et al. 2020, NatAs, 4, 930
- Loeffler, M. J., & Baragiola, R. A. 2010, JChPh, 133, 214506
- Loeffler, M. J., Raut, U., & Baragiola, R. A. 2010, JChPh, 132, 054508
- Loeffler, M. J., Tribbett, P. D., Cooper, J. F., & Sturner, S. J. 2020, Icar, 351, 113943
- Luu, J., & Jewitt, D. 1996, AJ, 112, 2310
- Luu, J. X., & Jewitt, D. C. 2002, ARA&A, 40, 63
- Lv, X. Y., Boduch, P., Ding, J. J., et al. 2014, PCCP, 16, 3433
- Mahjoub, A., Brown, M. E., Poston, M. J., et al. 2021, ApJL, 914, L31
- Maity, S., Kaiser, R. I., & Jones, B. M. 2014a, ApJ, 789, 36
- Maity, S., Kaiser, R. I., & Jones, B. M. 2014b, FaDi, 168, 485
- Maity, S., Kaiser, R. I., & Jones, B. M. 2015, PCCP, 17, 3081
- Marks, J. H., Wang, J., Evseev, M. M., et al. 2023a, ApJ, 942, 43
- Marks, J. H., Wang, J., Sun, B. J., et al. 2023b, ACSCS, 9, 2241
- Martín-Doménech, R., Cruz-Díaz, G. A., & Muñoz Caro, G. M. 2018, MNRAS, 473, 2575
- Martinez, R., Bordalo, V., da Silveira, E. F., & Boechat-Roberty, H. M. 2014, MNRAS, 444, 3317
- Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al. 2014, ApJ, 788, 111 Materese, C. K., Cruikshank, D. P., Sandford, S. A., Imanaka, H., &
- Nuevo, M. 2015, ApJ, 812, 150
- McClure, M. K., Rocha, W. R. M., Pontoppidan, K. M., et al. 2023, NatAs, 7, 431
- Meinert, C., & Meierhenrich, U. J. 2012, AngCh, 51, 10460
- Meinert, C., Myrgorodska, I., de Marcellus, P., et al. 2016, Sci, 352, 208

Mifsud, D. V., Herczku, P., Sulik, B., et al. 2023, Atoms, 11, 19 Modica, P., & Palumbo, M. E. 2010, A&A, 519, A22

Moore, M. H., Ferrante, R. F., & Nuth, J. A. 1996, P&SS, 44, 927

Moore, M. H., Hudson, R. L., & Ferrante, R. F. 2003, EM&P, 92, 291

Muñoz Caro, G. M., Dartois, E., Boduch, P., et al. 2014, A&A, 566, A93

Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. 2019,

Neubeck, A., & McMahon, S. 2022, Prebiotic Chemistry and the Origin of

Nuevo, M., Bredehöft, H. J., Meierhenrich, U. J., d'Hendecourt, L., &

Oba, Y., Takano, Y., Naraoka, H., Watanabe, N., & Kouchi, A. 2019, NatCo,

Nayak, O., Hirschauer, A. S., Kavanagh, P. J., et al. 2024, ApJ, 963, 94

Nesvorný, D., Vokrouhlický, D., Dones, L., et al. 2017, ApJ, 845, 27

Noble, J. A., Fraser, H. J., Smith, Z. L., et al. 2024, NatAs, 8, 1169 Noble, J. A., Theule, P., Duvernay, F., et al. 2014, PCCP, 16, 23604

Nuevo, M., Cooper, G., & Sandford, S. A. 2018, NatCo, 9, 5276

Moore, M. H., & Hudson, R. L. 2003, Icar, 161, 486

Nesvorný, D. 2018, ARA&A, 56, 137

Life (1st ed.; Cham: Springer)

Thiemann, W. H. P. 2010, AsBio, 10, 245

190, 260

NatAs, 3, 808

10, 4413

48

Mejía, C., de Barros, A. L. F., Rothard, H., Boduch, P., & da Silveira, E. F. 2020, ApJ, 894, 132

Moore, M. H., Ferrante, R. F., Hudson, R. L., & Stone, J. N. 2007, Icar,

Menten, S. M., Sori, M. M., & Bramson, A. M. 2022, NatCo, 13, 4457

Métayer, R., Guilbert-Lepoutre, A., Ferruit, P., et al. 2019, FrASS, 6, 8

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 279:1 (49pp), 2025 July

- Öberg, K. I., Facchini, S., & Anderson, D. E. 2023, ARA&A, 61, 287
- Öberg, K. I., Fraser, H. J., Boogert, A. C. A., et al. 2007, A&A, 462, 1187
- Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnartz, H. 2009, A&A, 504, 891
- Palumbo, M. E. 2006, A&A, 453, 903
- Palumbo, M. E., Baratta, G. A., Leto, G., & Strazzulla, G. 2010, JMoSt, 972, 64
- Parent, P., Bournel, F., Lasne, J., et al. 2009, JChPh, 131, 154308
- Pasek, M., & Lauretta, D. 2008, OLEB, 38, 5
- Peeters, Z., Hudson, R. L., Moore, M. H., & Lewis, A. 2010, Icar, 210, 480
- Phua, Y. Y., Sakakibara, N., Ito, T., & Terashima, K. 2022, Icar, 387, 115152
 Pilling, S., Seperuelo Duarte, E., da Silveira, E. F., et al. 2010a, A&A, 509, A87
- Pilling, S., Seperuelo Duarte, E., Domaracka, A., et al. 2010b, A&A, 523, A77
- Pinilla-Alonso, N., Brunetto, R., De Prá, M. N., et al. 2025, NatAs, 9, 230
- Pinilla-Alonso, N., Licandro, J., Brunetto, R., et al. 2024, A&A, 692, L11
- Ponciano, C. R., Farenzena, L. S., Collado, V. M., da Silveira, E. F., & Wien, K. 2005, IJMSp, 244, 41
- Poston, M. J., Mahjoub, A., Ehlmann, B. L., et al. 2018, ApJ, 856, 124
- Potapov, A., Fulvio, D., Krasnokutski, S., Jager, C., & Henning, T. 2022, JPCA, 126, 1627
- Prasad, S. S., & Tarafdar, S. P. 1983, ApJ, 267, 603
- Prialnik, D. K., Barucci, A., & Young, L. 2020, The Trans-Neptunian Solar System (1st ed.; Amsterdam: Elsevier Science)
- Protopapa, S., Raut, U., Wong, I., et al. 2024, NatCo, 15, 8247
- Quirico, E., Bacmann, A., Wolters, C., et al. 2023, Icar, 394, 115396
- Raut, U., Famá, M., Loeffler, M. J., & Baragiola, R. A. 2008, ApJ, 687, 1070
- Rodríguez-Lazcano, Y., Maté, B., Herrero, V. J., Escribano, R., & Gálvez, Ó. 2014, PCCP, 16, 3371
- Roser, J. E., Ricca, A., Cartwright, R. J., Dalle Ore, C., & Cruikshank, D. P. 2021, PSJ, 2, 240
- Sakakibara, N., Yu, P. Y., Ito, T., & Terashima, K. 2020, ApJL, 891, L44
- Sandford, S. A., Nuevo, M., Bera, P. P., & Lee, T. J. 2020, ChRev, 120, 4616
- Schmidt, F., Borrmann, T., Mues, M. P., et al. 2022, Atoms, 10, 25
- Schmidt, F., Swiderek, P., & Bredehöft, J. H. 2019, ESC, 3, 1974
- Schmidt, F., Swiderek, P., Scheele, T., & Bredehöft, J. H. 2021, PCCP, 23, 11649
- Seccull, T., Fraser, W. C., Kiersz, D. A., & Puzia, T. H. 2024, PSJ, 5, 42
- Seccull, T., Fraser, W. C., Puzia, T. H., Brown, M. E., & Schönebeck, F. 2018, ApJL, 855, L26
- Socrates, G. 2004, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (3rd ed.; Chichester: Wiley)
- Soland, N. E., Roh, I., Huynh, W.-S., & Yang, P. 2023, ACS Sust. Chem. Eng., 11, 12478
- Souza-Feliciano, A. C., Holler, B. J., Pinilla-Alonso, N., et al. 2024, A&A, 681, L17
- Strazzulla, G., Cooper, J. F., Christian, E. R., & Johnson, R. E. 2003, CRPhy, 4, 791
- Teolis, B. D., Loeffler, M. J., Raut, U., Famá, M., & Baragiola, R. A. 2007, Icar, 190, 274
- Tielens, A. G. G. M. 2013, RvMP, 85, 1021
- Tonauer, C. M., Kock, E. M., Gasser, T. M., et al. 2021, JPCA, 125, 1062

- Torres-Díaz, D., Basalgète, R., Amiaud, L., et al. 2024, A&A, 690, A90
- Tribbett, P. D., Tegler, S. C., & Loeffler, M. J. 2021, ApJ, 915, 40
- Tsuge, M., Hidaka, H., Kouchi, A., & Watanabe, N. 2020, ApJ, 900, 187
- Turner, A. M., Abplanalp, M. J., Chen, S. Y., et al. 2015, PCCP, 17, 27281
- Turner, A. M., Bergantini, A., Koutsogiannis, A. S., et al. 2021a, ApJ, 916, 74
 Turner, A. M., Chandra, S., Fortenberry, R. C., & Kaiser, R. I. 2021b, ChemPhysChem, 22, 985
- Turner, A. M., & Kaiser, R. I. 2020, AcChR, 53, 2791
- Turner, A. M., Koutsogiannis, A. S., Kleimeier, N. F., et al. 2020, ApJ, 896, 88
- Urso, R. G., Vuitton, V., Danger, G., et al. 2020, A&A, 644, A115
- van Dishoeck, E. F., Herbst, E., & Neufeld, D. A. 2013, ChRv, 113, 9043
- Vasconcelos, F. A., Pilling, S., Agnihotri, A., Rothard, H., & Boduch, P. 2020, Icar, 351, 113944
- Vasconcelos, F. d. A., Pilling, S., Rocha, W. R. M., Rothard, H., & Boduch, P. 2017, ApJ, 850, 174
- Vinogradoff, V., Fray, N., Duvernay, F., et al. 2013, A&A, 551, A128
- Vinogradoff, V., Leyva, V., Mates-Torres, E., et al. 2024, E&PSL, 626, 118558
- Volosatova, A. D., Tyurin, D. A., & Feldman, V. I. 2022, JPCA, 126, 3893
- Wada, A., Mochizuki, N., & Hiraoka, K. 2006, ApJ, 644, 300
- Walton, C. R., Rigley, J. K., Lipp, A., et al. 2024, NatAs, 8, 556
- Wang, J., Nikolayev, A. A., Marks, J. H., et al. 2024a, JAChS, 146, 28437
- Wang, J., Turner, A. M., Marks, J. H., et al. 2024b, ApJ, 967, 79
- Wang, X., & Burgi, T. 2021, AngCh, 60, 7860
- Wohar, M. M., & Jagodzinski, P. W. 1991, JMoSp, 148, 13
- Wu, C. Y. R., Judge, D. L., Cheng, B. M., et al. 2003, JGRE, 108, 5032 Yeghikyan, A. 2017, Ap, 60, 374
- Young, L. A., Braga-Ribas, F., & Johnson, R. E. 2020, in The Trans-Neptunian Solar System, ed. D. Prialnik, M. A. Barucci, & L. A. Young (1st ed.; Amsterdam: Elsevier), 127
- Zanchet, A., Rodríguez-Lazcano, Y., Gálvez, Ó., et al. 2013, ApJ, 777, 26
- Zasimov, P. V., Sanochkina, E. V., Tyurin, D. A., & Feldman, V. I. 2023, PCCP, 25, 21883
- Zhang, C., Leyvac, V., Wang, J., et al. 2024, PNAS, 121, e2320215121
- Zhang, C., Wang, J., Turner, A. M., et al. 2023a, ApJ, 952, 132
- Zhang, C., Wang, J., Turner, A. M., Young, L. A., & Kaiser, R. I. 2025a, ApJS, 278, 30
- Zhang, C., Young, L. A., & Kaiser, R. I. 2025b, ApJ, 980, 248
- Zhang, C., Zhu, C., Turner, A. M., et al. 2023b, SciA, 9, eadg6936
- Zheng, W., Jewitt, D., & Kaiser, R. I. 2006a, ApJ, 639, 534
- Zheng, W., Jewitt, D., & Kaiser, R. I. 2006b, ApJ, 648, 753
- Zheng, W., Jewitt, D., & Kaiser, R. I. 2009a, ApJS, 181, 53
- Zheng, W., Jewitt, D., & Kaiser, R. I. 2009b, JPCA, 113, 11174
- Zheng, W., Jewitt, D., Osamura, Y., & Kaiser, R. I. 2008, ApJ, 674, 1242
- Zheng, W., & Kaiser, R. I. 2007a, CPL, 440, 229
- Zheng, W., & Kaiser, R. I. 2007b, CPL, 450, 55
- Zheng, W., & Kaiser, R. I. 2010, JPCA, 114, 5251
- Zheng, W., Kim, Y. S., & Kaiser, R. I. 2011, PCCP, 13, 15749
- Zhu, C., Bergantini, A., Singh, S. K., Abplanalp, M. J., & Kaiser, R. I. 2021, ApJ, 920, 73
- Zhu, C., Turner, A. M., Abplanalp, M. J., & Kaiser, R. I. 2018, ApJS, 234, 15
- Zhu, C., Turner, A. M., Meinert, C., & Kaiser, R. I. 2020, ApJ, 889, 134